| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdcntz2.1 | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdcntz2.2 | 
							 |-  ( ph -> dom S = I )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdcntz2.c | 
							 |-  ( ph -> C C_ I )  | 
						
						
							| 4 | 
							
								
							 | 
							dprdcntz2.d | 
							 |-  ( ph -> D C_ I )  | 
						
						
							| 5 | 
							
								
							 | 
							dprdcntz2.i | 
							 |-  ( ph -> ( C i^i D ) = (/) )  | 
						
						
							| 6 | 
							
								
							 | 
							dprdcntz2.z | 
							 |-  Z = ( Cntz ` G )  | 
						
						
							| 7 | 
							
								1 2 3
							 | 
							dprdres | 
							 |-  ( ph -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simpld | 
							 |-  ( ph -> G dom DProd ( S |` C ) )  | 
						
						
							| 9 | 
							
								
							 | 
							dmres | 
							 |-  dom ( S |` C ) = ( C i^i dom S )  | 
						
						
							| 10 | 
							
								3 2
							 | 
							sseqtrrd | 
							 |-  ( ph -> C C_ dom S )  | 
						
						
							| 11 | 
							
								
							 | 
							dfss2 | 
							 |-  ( C C_ dom S <-> ( C i^i dom S ) = C )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylib | 
							 |-  ( ph -> ( C i^i dom S ) = C )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							eqtrid | 
							 |-  ( ph -> dom ( S |` C ) = C )  | 
						
						
							| 14 | 
							
								
							 | 
							dprdgrp | 
							 |-  ( G dom DProd S -> G e. Grp )  | 
						
						
							| 15 | 
							
								1 14
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 17 | 
							
								16
							 | 
							dprdssv | 
							 |-  ( G DProd ( S |` D ) ) C_ ( Base ` G )  | 
						
						
							| 18 | 
							
								16 6
							 | 
							cntzsubg | 
							 |-  ( ( G e. Grp /\ ( G DProd ( S |` D ) ) C_ ( Base ` G ) ) -> ( Z ` ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 19 | 
							
								15 17 18
							 | 
							sylancl | 
							 |-  ( ph -> ( Z ` ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fvres | 
							 |-  ( x e. C -> ( ( S |` C ) ` x ) = ( S ` x ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) = ( S ` x ) )  | 
						
						
							| 22 | 
							
								1 2 4
							 | 
							dprdres | 
							 |-  ( ph -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							simpld | 
							 |-  ( ph -> G dom DProd ( S |` D ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. C ) -> G dom DProd ( S |` D ) )  | 
						
						
							| 25 | 
							
								
							 | 
							dprdsubg | 
							 |-  ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ( ph /\ x e. C ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 27 | 
							
								3
							 | 
							sselda | 
							 |-  ( ( ph /\ x e. C ) -> x e. I )  | 
						
						
							| 28 | 
							
								1 2
							 | 
							dprdf2 | 
							 |-  ( ph -> S : I --> ( SubGrp ` G ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							syldan | 
							 |-  ( ( ph /\ x e. C ) -> ( S ` x ) e. ( SubGrp ` G ) )  | 
						
						
							| 31 | 
							
								
							 | 
							dmres | 
							 |-  dom ( S |` D ) = ( D i^i dom S )  | 
						
						
							| 32 | 
							
								4 2
							 | 
							sseqtrrd | 
							 |-  ( ph -> D C_ dom S )  | 
						
						
							| 33 | 
							
								
							 | 
							dfss2 | 
							 |-  ( D C_ dom S <-> ( D i^i dom S ) = D )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							sylib | 
							 |-  ( ph -> ( D i^i dom S ) = D )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							eqtrid | 
							 |-  ( ph -> dom ( S |` D ) = D )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. C ) -> dom ( S |` D ) = D )  | 
						
						
							| 37 | 
							
								15
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. C ) -> G e. Grp )  | 
						
						
							| 38 | 
							
								16
							 | 
							subgss | 
							 |-  ( ( S ` x ) e. ( SubGrp ` G ) -> ( S ` x ) C_ ( Base ` G ) )  | 
						
						
							| 39 | 
							
								30 38
							 | 
							syl | 
							 |-  ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( Base ` G ) )  | 
						
						
							| 40 | 
							
								16 6
							 | 
							cntzsubg | 
							 |-  ( ( G e. Grp /\ ( S ` x ) C_ ( Base ` G ) ) -> ( Z ` ( S ` x ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 41 | 
							
								37 39 40
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. C ) -> ( Z ` ( S ` x ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 42 | 
							
								
							 | 
							fvres | 
							 |-  ( y e. D -> ( ( S |` D ) ` y ) = ( S ` y ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( ( S |` D ) ` y ) = ( S ` y ) )  | 
						
						
							| 44 | 
							
								1
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> G dom DProd S )  | 
						
						
							| 45 | 
							
								2
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> dom S = I )  | 
						
						
							| 46 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. C ) -> D C_ I )  | 
						
						
							| 47 | 
							
								46
							 | 
							sselda | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> y e. I )  | 
						
						
							| 48 | 
							
								27
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> x e. I )  | 
						
						
							| 49 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> y e. D )  | 
						
						
							| 50 | 
							
								
							 | 
							noel | 
							 |-  -. x e. (/)  | 
						
						
							| 51 | 
							
								
							 | 
							elin | 
							 |-  ( x e. ( C i^i D ) <-> ( x e. C /\ x e. D ) )  | 
						
						
							| 52 | 
							
								5
							 | 
							eleq2d | 
							 |-  ( ph -> ( x e. ( C i^i D ) <-> x e. (/) ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							bitr3id | 
							 |-  ( ph -> ( ( x e. C /\ x e. D ) <-> x e. (/) ) )  | 
						
						
							| 54 | 
							
								50 53
							 | 
							mtbiri | 
							 |-  ( ph -> -. ( x e. C /\ x e. D ) )  | 
						
						
							| 55 | 
							
								
							 | 
							imnan | 
							 |-  ( ( x e. C -> -. x e. D ) <-> -. ( x e. C /\ x e. D ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							sylibr | 
							 |-  ( ph -> ( x e. C -> -. x e. D ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							imp | 
							 |-  ( ( ph /\ x e. C ) -> -. x e. D )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> -. x e. D )  | 
						
						
							| 59 | 
							
								
							 | 
							nelne2 | 
							 |-  ( ( y e. D /\ -. x e. D ) -> y =/= x )  | 
						
						
							| 60 | 
							
								49 58 59
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> y =/= x )  | 
						
						
							| 61 | 
							
								44 45 47 48 60 6
							 | 
							dprdcntz | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( S ` y ) C_ ( Z ` ( S ` x ) ) )  | 
						
						
							| 62 | 
							
								43 61
							 | 
							eqsstrd | 
							 |-  ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( ( S |` D ) ` y ) C_ ( Z ` ( S ` x ) ) )  | 
						
						
							| 63 | 
							
								24 36 41 62
							 | 
							dprdlub | 
							 |-  ( ( ph /\ x e. C ) -> ( G DProd ( S |` D ) ) C_ ( Z ` ( S ` x ) ) )  | 
						
						
							| 64 | 
							
								6 26 30 63
							 | 
							cntzrecd | 
							 |-  ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( Z ` ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 65 | 
							
								21 64
							 | 
							eqsstrd | 
							 |-  ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) C_ ( Z ` ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 66 | 
							
								8 13 19 65
							 | 
							dprdlub | 
							 |-  ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) )  |