Step |
Hyp |
Ref |
Expression |
1 |
|
dprdcntz.1 |
|- ( ph -> G dom DProd S ) |
2 |
|
dprdcntz.2 |
|- ( ph -> dom S = I ) |
3 |
|
dprdcntz.3 |
|- ( ph -> X e. I ) |
4 |
|
dprddisj.0 |
|- .0. = ( 0g ` G ) |
5 |
|
dprddisj.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
6 |
|
fveq2 |
|- ( x = X -> ( S ` x ) = ( S ` X ) ) |
7 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
8 |
7
|
difeq2d |
|- ( x = X -> ( I \ { x } ) = ( I \ { X } ) ) |
9 |
8
|
imaeq2d |
|- ( x = X -> ( S " ( I \ { x } ) ) = ( S " ( I \ { X } ) ) ) |
10 |
9
|
unieqd |
|- ( x = X -> U. ( S " ( I \ { x } ) ) = U. ( S " ( I \ { X } ) ) ) |
11 |
10
|
fveq2d |
|- ( x = X -> ( K ` U. ( S " ( I \ { x } ) ) ) = ( K ` U. ( S " ( I \ { X } ) ) ) ) |
12 |
6 11
|
ineq12d |
|- ( x = X -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) ) |
13 |
12
|
eqeq1d |
|- ( x = X -> ( ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } <-> ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) = { .0. } ) ) |
14 |
1 2
|
dprddomcld |
|- ( ph -> I e. _V ) |
15 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
16 |
15 4 5
|
dmdprd |
|- ( ( I e. _V /\ dom S = I ) -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) ) |
17 |
14 2 16
|
syl2anc |
|- ( ph -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) ) |
18 |
1 17
|
mpbid |
|- ( ph -> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) |
19 |
18
|
simp3d |
|- ( ph -> A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) |
20 |
|
simpr |
|- ( ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
21 |
20
|
ralimi |
|- ( A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) -> A. x e. I ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
22 |
19 21
|
syl |
|- ( ph -> A. x e. I ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
23 |
13 22 3
|
rspcdva |
|- ( ph -> ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) = { .0. } ) |