Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dprddomcld.1 | |- ( ph -> G dom DProd S ) |
|
dprddomcld.2 | |- ( ph -> dom S = I ) |
||
Assertion | dprddomcld | |- ( ph -> I e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprddomcld.1 | |- ( ph -> G dom DProd S ) |
|
2 | dprddomcld.2 | |- ( ph -> dom S = I ) |
|
3 | df-nel | |- ( dom S e/ _V <-> -. dom S e. _V ) |
|
4 | dprddomprc | |- ( dom S e/ _V -> -. G dom DProd S ) |
|
5 | 3 4 | sylbir | |- ( -. dom S e. _V -> -. G dom DProd S ) |
6 | 5 | con4i | |- ( G dom DProd S -> dom S e. _V ) |
7 | eleq1 | |- ( dom S = I -> ( dom S e. _V <-> I e. _V ) ) |
|
8 | 6 7 | syl5ib | |- ( dom S = I -> ( G dom DProd S -> I e. _V ) ) |
9 | 2 1 8 | sylc | |- ( ph -> I e. _V ) |