Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprddomcld.1 | |- ( ph -> G dom DProd S ) |
|
| dprddomcld.2 | |- ( ph -> dom S = I ) |
||
| Assertion | dprddomcld | |- ( ph -> I e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprddomcld.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprddomcld.2 | |- ( ph -> dom S = I ) |
|
| 3 | df-nel | |- ( dom S e/ _V <-> -. dom S e. _V ) |
|
| 4 | dprddomprc | |- ( dom S e/ _V -> -. G dom DProd S ) |
|
| 5 | 3 4 | sylbir | |- ( -. dom S e. _V -> -. G dom DProd S ) |
| 6 | 5 | con4i | |- ( G dom DProd S -> dom S e. _V ) |
| 7 | eleq1 | |- ( dom S = I -> ( dom S e. _V <-> I e. _V ) ) |
|
| 8 | 6 7 | imbitrid | |- ( dom S = I -> ( G dom DProd S -> I e. _V ) ) |
| 9 | 2 1 8 | sylc | |- ( ph -> I e. _V ) |