Metamath Proof Explorer


Theorem dprddomcld

Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019)

Ref Expression
Hypotheses dprddomcld.1
|- ( ph -> G dom DProd S )
dprddomcld.2
|- ( ph -> dom S = I )
Assertion dprddomcld
|- ( ph -> I e. _V )

Proof

Step Hyp Ref Expression
1 dprddomcld.1
 |-  ( ph -> G dom DProd S )
2 dprddomcld.2
 |-  ( ph -> dom S = I )
3 df-nel
 |-  ( dom S e/ _V <-> -. dom S e. _V )
4 dprddomprc
 |-  ( dom S e/ _V -> -. G dom DProd S )
5 3 4 sylbir
 |-  ( -. dom S e. _V -> -. G dom DProd S )
6 5 con4i
 |-  ( G dom DProd S -> dom S e. _V )
7 eleq1
 |-  ( dom S = I -> ( dom S e. _V <-> I e. _V ) )
8 6 7 syl5ib
 |-  ( dom S = I -> ( G dom DProd S -> I e. _V ) )
9 2 1 8 sylc
 |-  ( ph -> I e. _V )