Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dprddomprc | |- ( dom S e/ _V -> -. G dom DProd S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( dom S e/ _V <-> -. dom S e. _V ) |
|
| 2 | dmexg | |- ( S e. _V -> dom S e. _V ) |
|
| 3 | 2 | con3i | |- ( -. dom S e. _V -> -. S e. _V ) |
| 4 | 1 3 | sylbi | |- ( dom S e/ _V -> -. S e. _V ) |
| 5 | reldmdprd | |- Rel dom DProd |
|
| 6 | 5 | brrelex2i | |- ( G dom DProd S -> S e. _V ) |
| 7 | 4 6 | nsyl | |- ( dom S e/ _V -> -. G dom DProd S ) |