Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
|- .0. = ( 0g ` G ) |
2 |
|
eldprdi.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
3 |
|
eldprdi.1 |
|- ( ph -> G dom DProd S ) |
4 |
|
eldprdi.2 |
|- ( ph -> dom S = I ) |
5 |
|
eldprdi.3 |
|- ( ph -> F e. W ) |
6 |
|
dprdf11.4 |
|- ( ph -> H e. W ) |
7 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
8 |
2 3 4 5 7
|
dprdff |
|- ( ph -> F : I --> ( Base ` G ) ) |
9 |
8
|
ffnd |
|- ( ph -> F Fn I ) |
10 |
2 3 4 6 7
|
dprdff |
|- ( ph -> H : I --> ( Base ` G ) ) |
11 |
10
|
ffnd |
|- ( ph -> H Fn I ) |
12 |
|
eqfnfv |
|- ( ( F Fn I /\ H Fn I ) -> ( F = H <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
13 |
9 11 12
|
syl2anc |
|- ( ph -> ( F = H <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
14 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
15 |
1 2 3 4 5 6 14
|
dprdfsub |
|- ( ph -> ( ( F oF ( -g ` G ) H ) e. W /\ ( G gsum ( F oF ( -g ` G ) H ) ) = ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) ) ) |
16 |
15
|
simpld |
|- ( ph -> ( F oF ( -g ` G ) H ) e. W ) |
17 |
1 2 3 4 16
|
dprdfeq0 |
|- ( ph -> ( ( G gsum ( F oF ( -g ` G ) H ) ) = .0. <-> ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) ) ) |
18 |
15
|
simprd |
|- ( ph -> ( G gsum ( F oF ( -g ` G ) H ) ) = ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) ) |
19 |
18
|
eqeq1d |
|- ( ph -> ( ( G gsum ( F oF ( -g ` G ) H ) ) = .0. <-> ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. ) ) |
20 |
3 4
|
dprddomcld |
|- ( ph -> I e. _V ) |
21 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. _V ) |
22 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( H ` x ) e. _V ) |
23 |
8
|
feqmptd |
|- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
24 |
10
|
feqmptd |
|- ( ph -> H = ( x e. I |-> ( H ` x ) ) ) |
25 |
20 21 22 23 24
|
offval2 |
|- ( ph -> ( F oF ( -g ` G ) H ) = ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) ) |
26 |
25
|
eqeq1d |
|- ( ph -> ( ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) <-> ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) ) ) |
27 |
|
ovex |
|- ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V |
28 |
27
|
rgenw |
|- A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V |
29 |
|
mpteqb |
|- ( A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V -> ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. ) ) |
30 |
28 29
|
ax-mp |
|- ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. ) |
31 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
32 |
3 31
|
syl |
|- ( ph -> G e. Grp ) |
33 |
32
|
adantr |
|- ( ( ph /\ x e. I ) -> G e. Grp ) |
34 |
8
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( Base ` G ) ) |
35 |
10
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( H ` x ) e. ( Base ` G ) ) |
36 |
7 1 14
|
grpsubeq0 |
|- ( ( G e. Grp /\ ( F ` x ) e. ( Base ` G ) /\ ( H ` x ) e. ( Base ` G ) ) -> ( ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> ( F ` x ) = ( H ` x ) ) ) |
37 |
33 34 35 36
|
syl3anc |
|- ( ( ph /\ x e. I ) -> ( ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> ( F ` x ) = ( H ` x ) ) ) |
38 |
37
|
ralbidva |
|- ( ph -> ( A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
39 |
30 38
|
syl5bb |
|- ( ph -> ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
40 |
26 39
|
bitrd |
|- ( ph -> ( ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
41 |
17 19 40
|
3bitr3d |
|- ( ph -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
42 |
7
|
dprdssv |
|- ( G DProd S ) C_ ( Base ` G ) |
43 |
1 2 3 4 5
|
eldprdi |
|- ( ph -> ( G gsum F ) e. ( G DProd S ) ) |
44 |
42 43
|
sselid |
|- ( ph -> ( G gsum F ) e. ( Base ` G ) ) |
45 |
1 2 3 4 6
|
eldprdi |
|- ( ph -> ( G gsum H ) e. ( G DProd S ) ) |
46 |
42 45
|
sselid |
|- ( ph -> ( G gsum H ) e. ( Base ` G ) ) |
47 |
7 1 14
|
grpsubeq0 |
|- ( ( G e. Grp /\ ( G gsum F ) e. ( Base ` G ) /\ ( G gsum H ) e. ( Base ` G ) ) -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> ( G gsum F ) = ( G gsum H ) ) ) |
48 |
32 44 46 47
|
syl3anc |
|- ( ph -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> ( G gsum F ) = ( G gsum H ) ) ) |
49 |
13 41 48
|
3bitr2rd |
|- ( ph -> ( ( G gsum F ) = ( G gsum H ) <-> F = H ) ) |