| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdf1o.1 | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdf1o.2 | 
							 |-  ( ph -> dom S = I )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdf1o.3 | 
							 |-  ( ph -> F : J -1-1-onto-> I )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Cntz ` G ) = ( Cntz ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` G ) = ( 0g ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) )  | 
						
						
							| 7 | 
							
								
							 | 
							dprdgrp | 
							 |-  ( G dom DProd S -> G e. Grp )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 9 | 
							
								
							 | 
							f1of1 | 
							 |-  ( F : J -1-1-onto-> I -> F : J -1-1-> I )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							syl | 
							 |-  ( ph -> F : J -1-1-> I )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							dprddomcld | 
							 |-  ( ph -> I e. _V )  | 
						
						
							| 12 | 
							
								
							 | 
							f1dmex | 
							 |-  ( ( F : J -1-1-> I /\ I e. _V ) -> J e. _V )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							syl2anc | 
							 |-  ( ph -> J e. _V )  | 
						
						
							| 14 | 
							
								1 2
							 | 
							dprdf2 | 
							 |-  ( ph -> S : I --> ( SubGrp ` G ) )  | 
						
						
							| 15 | 
							
								
							 | 
							f1of | 
							 |-  ( F : J -1-1-onto-> I -> F : J --> I )  | 
						
						
							| 16 | 
							
								3 15
							 | 
							syl | 
							 |-  ( ph -> F : J --> I )  | 
						
						
							| 17 | 
							
								
							 | 
							fco | 
							 |-  ( ( S : I --> ( SubGrp ` G ) /\ F : J --> I ) -> ( S o. F ) : J --> ( SubGrp ` G ) )  | 
						
						
							| 18 | 
							
								14 16 17
							 | 
							syl2anc | 
							 |-  ( ph -> ( S o. F ) : J --> ( SubGrp ` G ) )  | 
						
						
							| 19 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> G dom DProd S )  | 
						
						
							| 20 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> dom S = I )  | 
						
						
							| 21 | 
							
								16
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> F : J --> I )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> x e. J )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` x ) e. I )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> y e. J )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` y ) e. I )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> x =/= y )  | 
						
						
							| 27 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> F : J -1-1-> I )  | 
						
						
							| 28 | 
							
								
							 | 
							f1fveq | 
							 |-  ( ( F : J -1-1-> I /\ ( x e. J /\ y e. J ) ) -> ( ( F ` x ) = ( F ` y ) <-> x = y ) )  | 
						
						
							| 29 | 
							
								27 22 24 28
							 | 
							syl12anc | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( F ` x ) = ( F ` y ) <-> x = y ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							necon3bid | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( F ` x ) =/= ( F ` y ) <-> x =/= y ) )  | 
						
						
							| 31 | 
							
								26 30
							 | 
							mpbird | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` x ) =/= ( F ` y ) )  | 
						
						
							| 32 | 
							
								19 20 23 25 31 4
							 | 
							dprdcntz | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( S ` ( F ` x ) ) C_ ( ( Cntz ` G ) ` ( S ` ( F ` y ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fvco3 | 
							 |-  ( ( F : J --> I /\ x e. J ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) )  | 
						
						
							| 34 | 
							
								21 22 33
							 | 
							syl2anc | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							fvco3 | 
							 |-  ( ( F : J --> I /\ y e. J ) -> ( ( S o. F ) ` y ) = ( S ` ( F ` y ) ) )  | 
						
						
							| 36 | 
							
								21 24 35
							 | 
							syl2anc | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` y ) = ( S ` ( F ` y ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( ( S o. F ) ` y ) ) = ( ( Cntz ` G ) ` ( S ` ( F ` y ) ) ) )  | 
						
						
							| 38 | 
							
								32 34 37
							 | 
							3sstr4d | 
							 |-  ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S o. F ) ` y ) ) )  | 
						
						
							| 39 | 
							
								16 33
							 | 
							sylan | 
							 |-  ( ( ph /\ x e. J ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							imaco | 
							 |-  ( ( S o. F ) " ( J \ { x } ) ) = ( S " ( F " ( J \ { x } ) ) ) | 
						
						
							| 41 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. J ) -> F : J -1-1-onto-> I )  | 
						
						
							| 42 | 
							
								
							 | 
							dff1o3 | 
							 |-  ( F : J -1-1-onto-> I <-> ( F : J -onto-> I /\ Fun `' F ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							simprbi | 
							 |-  ( F : J -1-1-onto-> I -> Fun `' F )  | 
						
						
							| 44 | 
							
								
							 | 
							imadif | 
							 |-  ( Fun `' F -> ( F " ( J \ { x } ) ) = ( ( F " J ) \ ( F " { x } ) ) ) | 
						
						
							| 45 | 
							
								41 43 44
							 | 
							3syl | 
							 |-  ( ( ph /\ x e. J ) -> ( F " ( J \ { x } ) ) = ( ( F " J ) \ ( F " { x } ) ) ) | 
						
						
							| 46 | 
							
								
							 | 
							f1ofo | 
							 |-  ( F : J -1-1-onto-> I -> F : J -onto-> I )  | 
						
						
							| 47 | 
							
								
							 | 
							foima | 
							 |-  ( F : J -onto-> I -> ( F " J ) = I )  | 
						
						
							| 48 | 
							
								41 46 47
							 | 
							3syl | 
							 |-  ( ( ph /\ x e. J ) -> ( F " J ) = I )  | 
						
						
							| 49 | 
							
								
							 | 
							f1ofn | 
							 |-  ( F : J -1-1-onto-> I -> F Fn J )  | 
						
						
							| 50 | 
							
								3 49
							 | 
							syl | 
							 |-  ( ph -> F Fn J )  | 
						
						
							| 51 | 
							
								
							 | 
							fnsnfv | 
							 |-  ( ( F Fn J /\ x e. J ) -> { ( F ` x ) } = ( F " { x } ) ) | 
						
						
							| 52 | 
							
								50 51
							 | 
							sylan | 
							 |-  ( ( ph /\ x e. J ) -> { ( F ` x ) } = ( F " { x } ) ) | 
						
						
							| 53 | 
							
								52
							 | 
							eqcomd | 
							 |-  ( ( ph /\ x e. J ) -> ( F " { x } ) = { ( F ` x ) } ) | 
						
						
							| 54 | 
							
								48 53
							 | 
							difeq12d | 
							 |-  ( ( ph /\ x e. J ) -> ( ( F " J ) \ ( F " { x } ) ) = ( I \ { ( F ` x ) } ) ) | 
						
						
							| 55 | 
							
								45 54
							 | 
							eqtrd | 
							 |-  ( ( ph /\ x e. J ) -> ( F " ( J \ { x } ) ) = ( I \ { ( F ` x ) } ) ) | 
						
						
							| 56 | 
							
								55
							 | 
							imaeq2d | 
							 |-  ( ( ph /\ x e. J ) -> ( S " ( F " ( J \ { x } ) ) ) = ( S " ( I \ { ( F ` x ) } ) ) ) | 
						
						
							| 57 | 
							
								40 56
							 | 
							eqtrid | 
							 |-  ( ( ph /\ x e. J ) -> ( ( S o. F ) " ( J \ { x } ) ) = ( S " ( I \ { ( F ` x ) } ) ) ) | 
						
						
							| 58 | 
							
								57
							 | 
							unieqd | 
							 |-  ( ( ph /\ x e. J ) -> U. ( ( S o. F ) " ( J \ { x } ) ) = U. ( S " ( I \ { ( F ` x ) } ) ) ) | 
						
						
							| 59 | 
							
								58
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x e. J ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) | 
						
						
							| 60 | 
							
								39 59
							 | 
							ineq12d | 
							 |-  ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = ( ( S ` ( F ` x ) ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) ) | 
						
						
							| 61 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. J ) -> G dom DProd S )  | 
						
						
							| 62 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. J ) -> dom S = I )  | 
						
						
							| 63 | 
							
								16
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ x e. J ) -> ( F ` x ) e. I )  | 
						
						
							| 64 | 
							
								61 62 63 5 6
							 | 
							dprddisj | 
							 |-  ( ( ph /\ x e. J ) -> ( ( S ` ( F ` x ) ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) = { ( 0g ` G ) } ) | 
						
						
							| 65 | 
							
								60 64
							 | 
							eqtrd | 
							 |-  ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = { ( 0g ` G ) } ) | 
						
						
							| 66 | 
							
								
							 | 
							eqimss | 
							 |-  ( ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = { ( 0g ` G ) } -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) | 
						
						
							| 67 | 
							
								65 66
							 | 
							syl | 
							 |-  ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) | 
						
						
							| 68 | 
							
								4 5 6 8 13 18 38 67
							 | 
							dmdprdd | 
							 |-  ( ph -> G dom DProd ( S o. F ) )  | 
						
						
							| 69 | 
							
								
							 | 
							rnco2 | 
							 |-  ran ( S o. F ) = ( S " ran F )  | 
						
						
							| 70 | 
							
								
							 | 
							forn | 
							 |-  ( F : J -onto-> I -> ran F = I )  | 
						
						
							| 71 | 
							
								3 46 70
							 | 
							3syl | 
							 |-  ( ph -> ran F = I )  | 
						
						
							| 72 | 
							
								71
							 | 
							imaeq2d | 
							 |-  ( ph -> ( S " ran F ) = ( S " I ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ffn | 
							 |-  ( S : I --> ( SubGrp ` G ) -> S Fn I )  | 
						
						
							| 74 | 
							
								
							 | 
							fnima | 
							 |-  ( S Fn I -> ( S " I ) = ran S )  | 
						
						
							| 75 | 
							
								14 73 74
							 | 
							3syl | 
							 |-  ( ph -> ( S " I ) = ran S )  | 
						
						
							| 76 | 
							
								72 75
							 | 
							eqtrd | 
							 |-  ( ph -> ( S " ran F ) = ran S )  | 
						
						
							| 77 | 
							
								69 76
							 | 
							eqtrid | 
							 |-  ( ph -> ran ( S o. F ) = ran S )  | 
						
						
							| 78 | 
							
								77
							 | 
							unieqd | 
							 |-  ( ph -> U. ran ( S o. F ) = U. ran S )  | 
						
						
							| 79 | 
							
								78
							 | 
							fveq2d | 
							 |-  ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) )  | 
						
						
							| 80 | 
							
								6
							 | 
							dprdspan | 
							 |-  ( G dom DProd ( S o. F ) -> ( G DProd ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) )  | 
						
						
							| 81 | 
							
								68 80
							 | 
							syl | 
							 |-  ( ph -> ( G DProd ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) )  | 
						
						
							| 82 | 
							
								6
							 | 
							dprdspan | 
							 |-  ( G dom DProd S -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) )  | 
						
						
							| 83 | 
							
								1 82
							 | 
							syl | 
							 |-  ( ph -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) )  | 
						
						
							| 84 | 
							
								79 81 83
							 | 
							3eqtr4d | 
							 |-  ( ph -> ( G DProd ( S o. F ) ) = ( G DProd S ) )  | 
						
						
							| 85 | 
							
								68 84
							 | 
							jca | 
							 |-  ( ph -> ( G dom DProd ( S o. F ) /\ ( G DProd ( S o. F ) ) = ( G DProd S ) ) )  |