Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
|- .0. = ( 0g ` G ) |
2 |
|
eldprdi.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
3 |
|
eldprdi.1 |
|- ( ph -> G dom DProd S ) |
4 |
|
eldprdi.2 |
|- ( ph -> dom S = I ) |
5 |
|
eldprdi.3 |
|- ( ph -> F e. W ) |
6 |
|
dprdfadd.4 |
|- ( ph -> H e. W ) |
7 |
|
dprdfadd.b |
|- .+ = ( +g ` G ) |
8 |
3 4
|
dprddomcld |
|- ( ph -> I e. _V ) |
9 |
2 3 4 5
|
dprdfcl |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) |
10 |
2 3 4 6
|
dprdfcl |
|- ( ( ph /\ x e. I ) -> ( H ` x ) e. ( S ` x ) ) |
11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
12 |
2 3 4 5 11
|
dprdff |
|- ( ph -> F : I --> ( Base ` G ) ) |
13 |
12
|
feqmptd |
|- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
14 |
2 3 4 6 11
|
dprdff |
|- ( ph -> H : I --> ( Base ` G ) ) |
15 |
14
|
feqmptd |
|- ( ph -> H = ( x e. I |-> ( H ` x ) ) ) |
16 |
8 9 10 13 15
|
offval2 |
|- ( ph -> ( F oF .+ H ) = ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) ) |
17 |
3 4
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
18 |
17
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
19 |
7
|
subgcl |
|- ( ( ( S ` x ) e. ( SubGrp ` G ) /\ ( F ` x ) e. ( S ` x ) /\ ( H ` x ) e. ( S ` x ) ) -> ( ( F ` x ) .+ ( H ` x ) ) e. ( S ` x ) ) |
20 |
18 9 10 19
|
syl3anc |
|- ( ( ph /\ x e. I ) -> ( ( F ` x ) .+ ( H ` x ) ) e. ( S ` x ) ) |
21 |
2 3 4 5
|
dprdffsupp |
|- ( ph -> F finSupp .0. ) |
22 |
2 3 4 6
|
dprdffsupp |
|- ( ph -> H finSupp .0. ) |
23 |
21 22
|
fsuppunfi |
|- ( ph -> ( ( F supp .0. ) u. ( H supp .0. ) ) e. Fin ) |
24 |
|
ssun1 |
|- ( F supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) |
25 |
24
|
a1i |
|- ( ph -> ( F supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) ) |
26 |
1
|
fvexi |
|- .0. e. _V |
27 |
26
|
a1i |
|- ( ph -> .0. e. _V ) |
28 |
12 25 8 27
|
suppssr |
|- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( F ` x ) = .0. ) |
29 |
|
ssun2 |
|- ( H supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) |
30 |
29
|
a1i |
|- ( ph -> ( H supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) ) |
31 |
14 30 8 27
|
suppssr |
|- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( H ` x ) = .0. ) |
32 |
28 31
|
oveq12d |
|- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( ( F ` x ) .+ ( H ` x ) ) = ( .0. .+ .0. ) ) |
33 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
34 |
3 33
|
syl |
|- ( ph -> G e. Grp ) |
35 |
11 1
|
grpidcl |
|- ( G e. Grp -> .0. e. ( Base ` G ) ) |
36 |
11 7 1
|
grplid |
|- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. .+ .0. ) = .0. ) |
37 |
34 35 36
|
syl2anc2 |
|- ( ph -> ( .0. .+ .0. ) = .0. ) |
38 |
37
|
adantr |
|- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( .0. .+ .0. ) = .0. ) |
39 |
32 38
|
eqtrd |
|- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( ( F ` x ) .+ ( H ` x ) ) = .0. ) |
40 |
39 8
|
suppss2 |
|- ( ph -> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) ) |
41 |
23 40
|
ssfid |
|- ( ph -> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) supp .0. ) e. Fin ) |
42 |
|
funmpt |
|- Fun ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) |
43 |
42
|
a1i |
|- ( ph -> Fun ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) ) |
44 |
8
|
mptexd |
|- ( ph -> ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) e. _V ) |
45 |
|
funisfsupp |
|- ( ( Fun ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) /\ ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) e. _V /\ .0. e. _V ) -> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) finSupp .0. <-> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) supp .0. ) e. Fin ) ) |
46 |
43 44 27 45
|
syl3anc |
|- ( ph -> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) finSupp .0. <-> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) supp .0. ) e. Fin ) ) |
47 |
41 46
|
mpbird |
|- ( ph -> ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) finSupp .0. ) |
48 |
2 3 4 20 47
|
dprdwd |
|- ( ph -> ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) e. W ) |
49 |
16 48
|
eqeltrd |
|- ( ph -> ( F oF .+ H ) e. W ) |
50 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
51 |
34
|
grpmndd |
|- ( ph -> G e. Mnd ) |
52 |
|
eqid |
|- ( ( F u. H ) supp .0. ) = ( ( F u. H ) supp .0. ) |
53 |
2 3 4 5 50
|
dprdfcntz |
|- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
54 |
2 3 4 6 50
|
dprdfcntz |
|- ( ph -> ran H C_ ( ( Cntz ` G ) ` ran H ) ) |
55 |
2 3 4 49 50
|
dprdfcntz |
|- ( ph -> ran ( F oF .+ H ) C_ ( ( Cntz ` G ) ` ran ( F oF .+ H ) ) ) |
56 |
51
|
adantr |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> G e. Mnd ) |
57 |
|
vex |
|- x e. _V |
58 |
57
|
a1i |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> x e. _V ) |
59 |
|
eldifi |
|- ( k e. ( I \ x ) -> k e. I ) |
60 |
59
|
adantl |
|- ( ( x C_ I /\ k e. ( I \ x ) ) -> k e. I ) |
61 |
|
ffvelrn |
|- ( ( F : I --> ( Base ` G ) /\ k e. I ) -> ( F ` k ) e. ( Base ` G ) ) |
62 |
12 60 61
|
syl2an |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( F ` k ) e. ( Base ` G ) ) |
63 |
62
|
snssd |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> { ( F ` k ) } C_ ( Base ` G ) ) |
64 |
11 50
|
cntzsubm |
|- ( ( G e. Mnd /\ { ( F ` k ) } C_ ( Base ` G ) ) -> ( ( Cntz ` G ) ` { ( F ` k ) } ) e. ( SubMnd ` G ) ) |
65 |
56 63 64
|
syl2anc |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( ( Cntz ` G ) ` { ( F ` k ) } ) e. ( SubMnd ` G ) ) |
66 |
14
|
adantr |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> H : I --> ( Base ` G ) ) |
67 |
66
|
ffnd |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> H Fn I ) |
68 |
|
simprl |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> x C_ I ) |
69 |
|
fnssres |
|- ( ( H Fn I /\ x C_ I ) -> ( H |` x ) Fn x ) |
70 |
67 68 69
|
syl2anc |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( H |` x ) Fn x ) |
71 |
|
fvres |
|- ( y e. x -> ( ( H |` x ) ` y ) = ( H ` y ) ) |
72 |
71
|
adantl |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( ( H |` x ) ` y ) = ( H ` y ) ) |
73 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> G dom DProd S ) |
74 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> dom S = I ) |
75 |
73 74
|
dprdf2 |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> S : I --> ( SubGrp ` G ) ) |
76 |
60
|
ad2antlr |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> k e. I ) |
77 |
75 76
|
ffvelrnd |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( S ` k ) e. ( SubGrp ` G ) ) |
78 |
11
|
subgss |
|- ( ( S ` k ) e. ( SubGrp ` G ) -> ( S ` k ) C_ ( Base ` G ) ) |
79 |
77 78
|
syl |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( S ` k ) C_ ( Base ` G ) ) |
80 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> F e. W ) |
81 |
2 73 74 80
|
dprdfcl |
|- ( ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) /\ k e. I ) -> ( F ` k ) e. ( S ` k ) ) |
82 |
76 81
|
mpdan |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( F ` k ) e. ( S ` k ) ) |
83 |
82
|
snssd |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> { ( F ` k ) } C_ ( S ` k ) ) |
84 |
11 50
|
cntz2ss |
|- ( ( ( S ` k ) C_ ( Base ` G ) /\ { ( F ` k ) } C_ ( S ` k ) ) -> ( ( Cntz ` G ) ` ( S ` k ) ) C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
85 |
79 83 84
|
syl2anc |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( ( Cntz ` G ) ` ( S ` k ) ) C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
86 |
68
|
sselda |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> y e. I ) |
87 |
|
simpr |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> y e. x ) |
88 |
|
simplrr |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> k e. ( I \ x ) ) |
89 |
88
|
eldifbd |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> -. k e. x ) |
90 |
|
nelne2 |
|- ( ( y e. x /\ -. k e. x ) -> y =/= k ) |
91 |
87 89 90
|
syl2anc |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> y =/= k ) |
92 |
73 74 86 76 91 50
|
dprdcntz |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( S ` y ) C_ ( ( Cntz ` G ) ` ( S ` k ) ) ) |
93 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> H e. W ) |
94 |
2 73 74 93
|
dprdfcl |
|- ( ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) /\ y e. I ) -> ( H ` y ) e. ( S ` y ) ) |
95 |
86 94
|
mpdan |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( H ` y ) e. ( S ` y ) ) |
96 |
92 95
|
sseldd |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( H ` y ) e. ( ( Cntz ` G ) ` ( S ` k ) ) ) |
97 |
85 96
|
sseldd |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( H ` y ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
98 |
72 97
|
eqeltrd |
|- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( ( H |` x ) ` y ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
99 |
98
|
ralrimiva |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> A. y e. x ( ( H |` x ) ` y ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
100 |
|
ffnfv |
|- ( ( H |` x ) : x --> ( ( Cntz ` G ) ` { ( F ` k ) } ) <-> ( ( H |` x ) Fn x /\ A. y e. x ( ( H |` x ) ` y ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) ) |
101 |
70 99 100
|
sylanbrc |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( H |` x ) : x --> ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
102 |
|
resss |
|- ( H |` x ) C_ H |
103 |
102
|
rnssi |
|- ran ( H |` x ) C_ ran H |
104 |
50
|
cntzidss |
|- ( ( ran H C_ ( ( Cntz ` G ) ` ran H ) /\ ran ( H |` x ) C_ ran H ) -> ran ( H |` x ) C_ ( ( Cntz ` G ) ` ran ( H |` x ) ) ) |
105 |
54 103 104
|
sylancl |
|- ( ph -> ran ( H |` x ) C_ ( ( Cntz ` G ) ` ran ( H |` x ) ) ) |
106 |
105
|
adantr |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ran ( H |` x ) C_ ( ( Cntz ` G ) ` ran ( H |` x ) ) ) |
107 |
22 27
|
fsuppres |
|- ( ph -> ( H |` x ) finSupp .0. ) |
108 |
107
|
adantr |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( H |` x ) finSupp .0. ) |
109 |
1 50 56 58 65 101 106 108
|
gsumzsubmcl |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( G gsum ( H |` x ) ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
110 |
109
|
snssd |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> { ( G gsum ( H |` x ) ) } C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
111 |
66 68
|
fssresd |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( H |` x ) : x --> ( Base ` G ) ) |
112 |
11 1 50 56 58 111 106 108
|
gsumzcl |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( G gsum ( H |` x ) ) e. ( Base ` G ) ) |
113 |
112
|
snssd |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> { ( G gsum ( H |` x ) ) } C_ ( Base ` G ) ) |
114 |
11 50
|
cntzrec |
|- ( ( { ( G gsum ( H |` x ) ) } C_ ( Base ` G ) /\ { ( F ` k ) } C_ ( Base ` G ) ) -> ( { ( G gsum ( H |` x ) ) } C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) <-> { ( F ` k ) } C_ ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) ) |
115 |
113 63 114
|
syl2anc |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( { ( G gsum ( H |` x ) ) } C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) <-> { ( F ` k ) } C_ ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) ) |
116 |
110 115
|
mpbid |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> { ( F ` k ) } C_ ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) |
117 |
|
fvex |
|- ( F ` k ) e. _V |
118 |
117
|
snss |
|- ( ( F ` k ) e. ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) <-> { ( F ` k ) } C_ ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) |
119 |
116 118
|
sylibr |
|- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( F ` k ) e. ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) |
120 |
11 1 7 50 51 8 21 22 52 12 14 53 54 55 119
|
gsumzaddlem |
|- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
121 |
49 120
|
jca |
|- ( ph -> ( ( F oF .+ H ) e. W /\ ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) ) |