Description: A finitely supported function in S is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } | |
| dprdff.1 | |- ( ph -> G dom DProd S ) | ||
| dprdff.2 | |- ( ph -> dom S = I ) | ||
| dprdff.3 | |- ( ph -> F e. W ) | ||
| Assertion | dprdffsupp | |- ( ph -> F finSupp .0. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dprdff.w |  |-  W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } | |
| 2 | dprdff.1 | |- ( ph -> G dom DProd S ) | |
| 3 | dprdff.2 | |- ( ph -> dom S = I ) | |
| 4 | dprdff.3 | |- ( ph -> F e. W ) | |
| 5 | 1 2 3 | dprdw | |- ( ph -> ( F e. W <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) ) ) | 
| 6 | 4 5 | mpbid | |- ( ph -> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) ) | 
| 7 | 6 | simp3d | |- ( ph -> F finSupp .0. ) |