| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldprdi.0 |
|- .0. = ( 0g ` G ) |
| 2 |
|
eldprdi.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
| 3 |
|
eldprdi.1 |
|- ( ph -> G dom DProd S ) |
| 4 |
|
eldprdi.2 |
|- ( ph -> dom S = I ) |
| 5 |
|
dprdfid.3 |
|- ( ph -> X e. I ) |
| 6 |
|
dprdfid.4 |
|- ( ph -> A e. ( S ` X ) ) |
| 7 |
|
dprdfid.f |
|- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
| 8 |
6
|
ad2antrr |
|- ( ( ( ph /\ n e. I ) /\ n = X ) -> A e. ( S ` X ) ) |
| 9 |
|
simpr |
|- ( ( ( ph /\ n e. I ) /\ n = X ) -> n = X ) |
| 10 |
9
|
fveq2d |
|- ( ( ( ph /\ n e. I ) /\ n = X ) -> ( S ` n ) = ( S ` X ) ) |
| 11 |
8 10
|
eleqtrrd |
|- ( ( ( ph /\ n e. I ) /\ n = X ) -> A e. ( S ` n ) ) |
| 12 |
3 4
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 13 |
12
|
ffvelcdmda |
|- ( ( ph /\ n e. I ) -> ( S ` n ) e. ( SubGrp ` G ) ) |
| 14 |
1
|
subg0cl |
|- ( ( S ` n ) e. ( SubGrp ` G ) -> .0. e. ( S ` n ) ) |
| 15 |
13 14
|
syl |
|- ( ( ph /\ n e. I ) -> .0. e. ( S ` n ) ) |
| 16 |
15
|
adantr |
|- ( ( ( ph /\ n e. I ) /\ -. n = X ) -> .0. e. ( S ` n ) ) |
| 17 |
11 16
|
ifclda |
|- ( ( ph /\ n e. I ) -> if ( n = X , A , .0. ) e. ( S ` n ) ) |
| 18 |
3 4
|
dprddomcld |
|- ( ph -> I e. _V ) |
| 19 |
1
|
fvexi |
|- .0. e. _V |
| 20 |
19
|
a1i |
|- ( ph -> .0. e. _V ) |
| 21 |
|
eqid |
|- ( n e. I |-> if ( n = X , A , .0. ) ) = ( n e. I |-> if ( n = X , A , .0. ) ) |
| 22 |
18 20 21
|
sniffsupp |
|- ( ph -> ( n e. I |-> if ( n = X , A , .0. ) ) finSupp .0. ) |
| 23 |
2 3 4 17 22
|
dprdwd |
|- ( ph -> ( n e. I |-> if ( n = X , A , .0. ) ) e. W ) |
| 24 |
7 23
|
eqeltrid |
|- ( ph -> F e. W ) |
| 25 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 26 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
| 27 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
| 28 |
3 26 27
|
3syl |
|- ( ph -> G e. Mnd ) |
| 29 |
2 3 4 24 25
|
dprdff |
|- ( ph -> F : I --> ( Base ` G ) ) |
| 30 |
7
|
oveq1i |
|- ( F supp .0. ) = ( ( n e. I |-> if ( n = X , A , .0. ) ) supp .0. ) |
| 31 |
|
eldifsni |
|- ( n e. ( I \ { X } ) -> n =/= X ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ n e. ( I \ { X } ) ) -> n =/= X ) |
| 33 |
|
ifnefalse |
|- ( n =/= X -> if ( n = X , A , .0. ) = .0. ) |
| 34 |
32 33
|
syl |
|- ( ( ph /\ n e. ( I \ { X } ) ) -> if ( n = X , A , .0. ) = .0. ) |
| 35 |
34 18
|
suppss2 |
|- ( ph -> ( ( n e. I |-> if ( n = X , A , .0. ) ) supp .0. ) C_ { X } ) |
| 36 |
30 35
|
eqsstrid |
|- ( ph -> ( F supp .0. ) C_ { X } ) |
| 37 |
25 1 28 18 5 29 36
|
gsumpt |
|- ( ph -> ( G gsum F ) = ( F ` X ) ) |
| 38 |
|
iftrue |
|- ( n = X -> if ( n = X , A , .0. ) = A ) |
| 39 |
7 38 5 6
|
fvmptd3 |
|- ( ph -> ( F ` X ) = A ) |
| 40 |
37 39
|
eqtrd |
|- ( ph -> ( G gsum F ) = A ) |
| 41 |
24 40
|
jca |
|- ( ph -> ( F e. W /\ ( G gsum F ) = A ) ) |