Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
|- .0. = ( 0g ` G ) |
2 |
|
eldprdi.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
3 |
|
eldprdi.1 |
|- ( ph -> G dom DProd S ) |
4 |
|
eldprdi.2 |
|- ( ph -> dom S = I ) |
5 |
|
eldprdi.3 |
|- ( ph -> F e. W ) |
6 |
|
dprdfinv.b |
|- N = ( invg ` G ) |
7 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
8 |
3 7
|
syl |
|- ( ph -> G e. Grp ) |
9 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
10 |
9 6
|
grpinvf |
|- ( G e. Grp -> N : ( Base ` G ) --> ( Base ` G ) ) |
11 |
8 10
|
syl |
|- ( ph -> N : ( Base ` G ) --> ( Base ` G ) ) |
12 |
2 3 4 5 9
|
dprdff |
|- ( ph -> F : I --> ( Base ` G ) ) |
13 |
|
fcompt |
|- ( ( N : ( Base ` G ) --> ( Base ` G ) /\ F : I --> ( Base ` G ) ) -> ( N o. F ) = ( x e. I |-> ( N ` ( F ` x ) ) ) ) |
14 |
11 12 13
|
syl2anc |
|- ( ph -> ( N o. F ) = ( x e. I |-> ( N ` ( F ` x ) ) ) ) |
15 |
3 4
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
16 |
15
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
17 |
2 3 4 5
|
dprdfcl |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) |
18 |
6
|
subginvcl |
|- ( ( ( S ` x ) e. ( SubGrp ` G ) /\ ( F ` x ) e. ( S ` x ) ) -> ( N ` ( F ` x ) ) e. ( S ` x ) ) |
19 |
16 17 18
|
syl2anc |
|- ( ( ph /\ x e. I ) -> ( N ` ( F ` x ) ) e. ( S ` x ) ) |
20 |
3 4
|
dprddomcld |
|- ( ph -> I e. _V ) |
21 |
20
|
mptexd |
|- ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) e. _V ) |
22 |
|
funmpt |
|- Fun ( x e. I |-> ( N ` ( F ` x ) ) ) |
23 |
22
|
a1i |
|- ( ph -> Fun ( x e. I |-> ( N ` ( F ` x ) ) ) ) |
24 |
2 3 4 5
|
dprdffsupp |
|- ( ph -> F finSupp .0. ) |
25 |
|
ssidd |
|- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
26 |
1
|
fvexi |
|- .0. e. _V |
27 |
26
|
a1i |
|- ( ph -> .0. e. _V ) |
28 |
12 25 20 27
|
suppssr |
|- ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( F ` x ) = .0. ) |
29 |
28
|
fveq2d |
|- ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` ( F ` x ) ) = ( N ` .0. ) ) |
30 |
1 6
|
grpinvid |
|- ( G e. Grp -> ( N ` .0. ) = .0. ) |
31 |
8 30
|
syl |
|- ( ph -> ( N ` .0. ) = .0. ) |
32 |
31
|
adantr |
|- ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` .0. ) = .0. ) |
33 |
29 32
|
eqtrd |
|- ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` ( F ` x ) ) = .0. ) |
34 |
33 20
|
suppss2 |
|- ( ph -> ( ( x e. I |-> ( N ` ( F ` x ) ) ) supp .0. ) C_ ( F supp .0. ) ) |
35 |
|
fsuppsssupp |
|- ( ( ( ( x e. I |-> ( N ` ( F ` x ) ) ) e. _V /\ Fun ( x e. I |-> ( N ` ( F ` x ) ) ) ) /\ ( F finSupp .0. /\ ( ( x e. I |-> ( N ` ( F ` x ) ) ) supp .0. ) C_ ( F supp .0. ) ) ) -> ( x e. I |-> ( N ` ( F ` x ) ) ) finSupp .0. ) |
36 |
21 23 24 34 35
|
syl22anc |
|- ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) finSupp .0. ) |
37 |
2 3 4 19 36
|
dprdwd |
|- ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) e. W ) |
38 |
14 37
|
eqeltrd |
|- ( ph -> ( N o. F ) e. W ) |
39 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
40 |
2 3 4 5 39
|
dprdfcntz |
|- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
41 |
9 1 39 6 8 20 12 40 24
|
gsumzinv |
|- ( ph -> ( G gsum ( N o. F ) ) = ( N ` ( G gsum F ) ) ) |
42 |
38 41
|
jca |
|- ( ph -> ( ( N o. F ) e. W /\ ( G gsum ( N o. F ) ) = ( N ` ( G gsum F ) ) ) ) |