| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldprdi.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 2 |  | eldprdi.w |  |-  W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } | 
						
							| 3 |  | eldprdi.1 |  |-  ( ph -> G dom DProd S ) | 
						
							| 4 |  | eldprdi.2 |  |-  ( ph -> dom S = I ) | 
						
							| 5 |  | eldprdi.3 |  |-  ( ph -> F e. W ) | 
						
							| 6 |  | dprdfinv.b |  |-  N = ( invg ` G ) | 
						
							| 7 |  | dprdgrp |  |-  ( G dom DProd S -> G e. Grp ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 9 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 10 | 9 6 | grpinvf |  |-  ( G e. Grp -> N : ( Base ` G ) --> ( Base ` G ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ph -> N : ( Base ` G ) --> ( Base ` G ) ) | 
						
							| 12 | 2 3 4 5 9 | dprdff |  |-  ( ph -> F : I --> ( Base ` G ) ) | 
						
							| 13 |  | fcompt |  |-  ( ( N : ( Base ` G ) --> ( Base ` G ) /\ F : I --> ( Base ` G ) ) -> ( N o. F ) = ( x e. I |-> ( N ` ( F ` x ) ) ) ) | 
						
							| 14 | 11 12 13 | syl2anc |  |-  ( ph -> ( N o. F ) = ( x e. I |-> ( N ` ( F ` x ) ) ) ) | 
						
							| 15 | 3 4 | dprdf2 |  |-  ( ph -> S : I --> ( SubGrp ` G ) ) | 
						
							| 16 | 15 | ffvelcdmda |  |-  ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) | 
						
							| 17 | 2 3 4 5 | dprdfcl |  |-  ( ( ph /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) | 
						
							| 18 | 6 | subginvcl |  |-  ( ( ( S ` x ) e. ( SubGrp ` G ) /\ ( F ` x ) e. ( S ` x ) ) -> ( N ` ( F ` x ) ) e. ( S ` x ) ) | 
						
							| 19 | 16 17 18 | syl2anc |  |-  ( ( ph /\ x e. I ) -> ( N ` ( F ` x ) ) e. ( S ` x ) ) | 
						
							| 20 | 3 4 | dprddomcld |  |-  ( ph -> I e. _V ) | 
						
							| 21 | 20 | mptexd |  |-  ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) e. _V ) | 
						
							| 22 |  | funmpt |  |-  Fun ( x e. I |-> ( N ` ( F ` x ) ) ) | 
						
							| 23 | 22 | a1i |  |-  ( ph -> Fun ( x e. I |-> ( N ` ( F ` x ) ) ) ) | 
						
							| 24 | 2 3 4 5 | dprdffsupp |  |-  ( ph -> F finSupp .0. ) | 
						
							| 25 |  | ssidd |  |-  ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) | 
						
							| 26 | 1 | fvexi |  |-  .0. e. _V | 
						
							| 27 | 26 | a1i |  |-  ( ph -> .0. e. _V ) | 
						
							| 28 | 12 25 20 27 | suppssr |  |-  ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( F ` x ) = .0. ) | 
						
							| 29 | 28 | fveq2d |  |-  ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` ( F ` x ) ) = ( N ` .0. ) ) | 
						
							| 30 | 1 6 | grpinvid |  |-  ( G e. Grp -> ( N ` .0. ) = .0. ) | 
						
							| 31 | 8 30 | syl |  |-  ( ph -> ( N ` .0. ) = .0. ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` .0. ) = .0. ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` ( F ` x ) ) = .0. ) | 
						
							| 34 | 33 20 | suppss2 |  |-  ( ph -> ( ( x e. I |-> ( N ` ( F ` x ) ) ) supp .0. ) C_ ( F supp .0. ) ) | 
						
							| 35 |  | fsuppsssupp |  |-  ( ( ( ( x e. I |-> ( N ` ( F ` x ) ) ) e. _V /\ Fun ( x e. I |-> ( N ` ( F ` x ) ) ) ) /\ ( F finSupp .0. /\ ( ( x e. I |-> ( N ` ( F ` x ) ) ) supp .0. ) C_ ( F supp .0. ) ) ) -> ( x e. I |-> ( N ` ( F ` x ) ) ) finSupp .0. ) | 
						
							| 36 | 21 23 24 34 35 | syl22anc |  |-  ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) finSupp .0. ) | 
						
							| 37 | 2 3 4 19 36 | dprdwd |  |-  ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) e. W ) | 
						
							| 38 | 14 37 | eqeltrd |  |-  ( ph -> ( N o. F ) e. W ) | 
						
							| 39 |  | eqid |  |-  ( Cntz ` G ) = ( Cntz ` G ) | 
						
							| 40 | 2 3 4 5 39 | dprdfcntz |  |-  ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) | 
						
							| 41 | 9 1 39 6 8 20 12 40 24 | gsumzinv |  |-  ( ph -> ( G gsum ( N o. F ) ) = ( N ` ( G gsum F ) ) ) | 
						
							| 42 | 38 41 | jca |  |-  ( ph -> ( ( N o. F ) e. W /\ ( G gsum ( N o. F ) ) = ( N ` ( G gsum F ) ) ) ) |