Metamath Proof Explorer


Theorem dprdfsub

Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0
|- .0. = ( 0g ` G )
eldprdi.w
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. }
eldprdi.1
|- ( ph -> G dom DProd S )
eldprdi.2
|- ( ph -> dom S = I )
eldprdi.3
|- ( ph -> F e. W )
dprdfadd.4
|- ( ph -> H e. W )
dprdfsub.b
|- .- = ( -g ` G )
Assertion dprdfsub
|- ( ph -> ( ( F oF .- H ) e. W /\ ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) )

Proof

Step Hyp Ref Expression
1 eldprdi.0
 |-  .0. = ( 0g ` G )
2 eldprdi.w
 |-  W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. }
3 eldprdi.1
 |-  ( ph -> G dom DProd S )
4 eldprdi.2
 |-  ( ph -> dom S = I )
5 eldprdi.3
 |-  ( ph -> F e. W )
6 dprdfadd.4
 |-  ( ph -> H e. W )
7 dprdfsub.b
 |-  .- = ( -g ` G )
8 eqid
 |-  ( Base ` G ) = ( Base ` G )
9 2 3 4 5 8 dprdff
 |-  ( ph -> F : I --> ( Base ` G ) )
10 9 ffvelrnda
 |-  ( ( ph /\ k e. I ) -> ( F ` k ) e. ( Base ` G ) )
11 2 3 4 6 8 dprdff
 |-  ( ph -> H : I --> ( Base ` G ) )
12 11 ffvelrnda
 |-  ( ( ph /\ k e. I ) -> ( H ` k ) e. ( Base ` G ) )
13 eqid
 |-  ( +g ` G ) = ( +g ` G )
14 eqid
 |-  ( invg ` G ) = ( invg ` G )
15 8 13 14 7 grpsubval
 |-  ( ( ( F ` k ) e. ( Base ` G ) /\ ( H ` k ) e. ( Base ` G ) ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) )
16 10 12 15 syl2anc
 |-  ( ( ph /\ k e. I ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) )
17 16 mpteq2dva
 |-  ( ph -> ( k e. I |-> ( ( F ` k ) .- ( H ` k ) ) ) = ( k e. I |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) )
18 3 4 dprddomcld
 |-  ( ph -> I e. _V )
19 9 feqmptd
 |-  ( ph -> F = ( k e. I |-> ( F ` k ) ) )
20 11 feqmptd
 |-  ( ph -> H = ( k e. I |-> ( H ` k ) ) )
21 18 10 12 19 20 offval2
 |-  ( ph -> ( F oF .- H ) = ( k e. I |-> ( ( F ` k ) .- ( H ` k ) ) ) )
22 fvexd
 |-  ( ( ph /\ k e. I ) -> ( ( invg ` G ) ` ( H ` k ) ) e. _V )
23 dprdgrp
 |-  ( G dom DProd S -> G e. Grp )
24 3 23 syl
 |-  ( ph -> G e. Grp )
25 8 14 24 grpinvf1o
 |-  ( ph -> ( invg ` G ) : ( Base ` G ) -1-1-onto-> ( Base ` G ) )
26 f1of
 |-  ( ( invg ` G ) : ( Base ` G ) -1-1-onto-> ( Base ` G ) -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) )
27 25 26 syl
 |-  ( ph -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) )
28 27 feqmptd
 |-  ( ph -> ( invg ` G ) = ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) )
29 fveq2
 |-  ( x = ( H ` k ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( H ` k ) ) )
30 12 20 28 29 fmptco
 |-  ( ph -> ( ( invg ` G ) o. H ) = ( k e. I |-> ( ( invg ` G ) ` ( H ` k ) ) ) )
31 18 10 22 19 30 offval2
 |-  ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) = ( k e. I |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) )
32 17 21 31 3eqtr4d
 |-  ( ph -> ( F oF .- H ) = ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) )
33 1 2 3 4 6 14 dprdfinv
 |-  ( ph -> ( ( ( invg ` G ) o. H ) e. W /\ ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) ) )
34 33 simpld
 |-  ( ph -> ( ( invg ` G ) o. H ) e. W )
35 1 2 3 4 5 34 13 dprdfadd
 |-  ( ph -> ( ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) e. W /\ ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) ) )
36 35 simpld
 |-  ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) e. W )
37 32 36 eqeltrd
 |-  ( ph -> ( F oF .- H ) e. W )
38 32 oveq2d
 |-  ( ph -> ( G gsum ( F oF .- H ) ) = ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) )
39 33 simprd
 |-  ( ph -> ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) )
40 39 oveq2d
 |-  ( ph -> ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) )
41 35 simprd
 |-  ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) )
42 8 dprdssv
 |-  ( G DProd S ) C_ ( Base ` G )
43 1 2 3 4 5 eldprdi
 |-  ( ph -> ( G gsum F ) e. ( G DProd S ) )
44 42 43 sselid
 |-  ( ph -> ( G gsum F ) e. ( Base ` G ) )
45 1 2 3 4 6 eldprdi
 |-  ( ph -> ( G gsum H ) e. ( G DProd S ) )
46 42 45 sselid
 |-  ( ph -> ( G gsum H ) e. ( Base ` G ) )
47 8 13 14 7 grpsubval
 |-  ( ( ( G gsum F ) e. ( Base ` G ) /\ ( G gsum H ) e. ( Base ` G ) ) -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) )
48 44 46 47 syl2anc
 |-  ( ph -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) )
49 40 41 48 3eqtr4d
 |-  ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) .- ( G gsum H ) ) )
50 38 49 eqtrd
 |-  ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) )
51 37 50 jca
 |-  ( ph -> ( ( F oF .- H ) e. W /\ ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) )