Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
|- .0. = ( 0g ` G ) |
2 |
|
eldprdi.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
3 |
|
eldprdi.1 |
|- ( ph -> G dom DProd S ) |
4 |
|
eldprdi.2 |
|- ( ph -> dom S = I ) |
5 |
|
eldprdi.3 |
|- ( ph -> F e. W ) |
6 |
|
dprdfadd.4 |
|- ( ph -> H e. W ) |
7 |
|
dprdfsub.b |
|- .- = ( -g ` G ) |
8 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
9 |
2 3 4 5 8
|
dprdff |
|- ( ph -> F : I --> ( Base ` G ) ) |
10 |
9
|
ffvelrnda |
|- ( ( ph /\ k e. I ) -> ( F ` k ) e. ( Base ` G ) ) |
11 |
2 3 4 6 8
|
dprdff |
|- ( ph -> H : I --> ( Base ` G ) ) |
12 |
11
|
ffvelrnda |
|- ( ( ph /\ k e. I ) -> ( H ` k ) e. ( Base ` G ) ) |
13 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
14 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
15 |
8 13 14 7
|
grpsubval |
|- ( ( ( F ` k ) e. ( Base ` G ) /\ ( H ` k ) e. ( Base ` G ) ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
16 |
10 12 15
|
syl2anc |
|- ( ( ph /\ k e. I ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
17 |
16
|
mpteq2dva |
|- ( ph -> ( k e. I |-> ( ( F ` k ) .- ( H ` k ) ) ) = ( k e. I |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
18 |
3 4
|
dprddomcld |
|- ( ph -> I e. _V ) |
19 |
9
|
feqmptd |
|- ( ph -> F = ( k e. I |-> ( F ` k ) ) ) |
20 |
11
|
feqmptd |
|- ( ph -> H = ( k e. I |-> ( H ` k ) ) ) |
21 |
18 10 12 19 20
|
offval2 |
|- ( ph -> ( F oF .- H ) = ( k e. I |-> ( ( F ` k ) .- ( H ` k ) ) ) ) |
22 |
|
fvexd |
|- ( ( ph /\ k e. I ) -> ( ( invg ` G ) ` ( H ` k ) ) e. _V ) |
23 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
24 |
3 23
|
syl |
|- ( ph -> G e. Grp ) |
25 |
8 14 24
|
grpinvf1o |
|- ( ph -> ( invg ` G ) : ( Base ` G ) -1-1-onto-> ( Base ` G ) ) |
26 |
|
f1of |
|- ( ( invg ` G ) : ( Base ` G ) -1-1-onto-> ( Base ` G ) -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) ) |
27 |
25 26
|
syl |
|- ( ph -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) ) |
28 |
27
|
feqmptd |
|- ( ph -> ( invg ` G ) = ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) ) |
29 |
|
fveq2 |
|- ( x = ( H ` k ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( H ` k ) ) ) |
30 |
12 20 28 29
|
fmptco |
|- ( ph -> ( ( invg ` G ) o. H ) = ( k e. I |-> ( ( invg ` G ) ` ( H ` k ) ) ) ) |
31 |
18 10 22 19 30
|
offval2 |
|- ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) = ( k e. I |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
32 |
17 21 31
|
3eqtr4d |
|- ( ph -> ( F oF .- H ) = ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) |
33 |
1 2 3 4 6 14
|
dprdfinv |
|- ( ph -> ( ( ( invg ` G ) o. H ) e. W /\ ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
34 |
33
|
simpld |
|- ( ph -> ( ( invg ` G ) o. H ) e. W ) |
35 |
1 2 3 4 5 34 13
|
dprdfadd |
|- ( ph -> ( ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) e. W /\ ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) ) ) |
36 |
35
|
simpld |
|- ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) e. W ) |
37 |
32 36
|
eqeltrd |
|- ( ph -> ( F oF .- H ) e. W ) |
38 |
32
|
oveq2d |
|- ( ph -> ( G gsum ( F oF .- H ) ) = ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) ) |
39 |
33
|
simprd |
|- ( ph -> ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) ) |
40 |
39
|
oveq2d |
|- ( ph -> ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
41 |
35
|
simprd |
|- ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) ) |
42 |
8
|
dprdssv |
|- ( G DProd S ) C_ ( Base ` G ) |
43 |
1 2 3 4 5
|
eldprdi |
|- ( ph -> ( G gsum F ) e. ( G DProd S ) ) |
44 |
42 43
|
sselid |
|- ( ph -> ( G gsum F ) e. ( Base ` G ) ) |
45 |
1 2 3 4 6
|
eldprdi |
|- ( ph -> ( G gsum H ) e. ( G DProd S ) ) |
46 |
42 45
|
sselid |
|- ( ph -> ( G gsum H ) e. ( Base ` G ) ) |
47 |
8 13 14 7
|
grpsubval |
|- ( ( ( G gsum F ) e. ( Base ` G ) /\ ( G gsum H ) e. ( Base ` G ) ) -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
48 |
44 46 47
|
syl2anc |
|- ( ph -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
49 |
40 41 48
|
3eqtr4d |
|- ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |
50 |
38 49
|
eqtrd |
|- ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |
51 |
37 50
|
jca |
|- ( ph -> ( ( F oF .- H ) e. W /\ ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) ) |