| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmdprdpr.z | 
							 |-  Z = ( Cntz ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							dmdprdpr.0 | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							dmdprdpr.s | 
							 |-  ( ph -> S e. ( SubGrp ` G ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dmdprdpr.t | 
							 |-  ( ph -> T e. ( SubGrp ` G ) )  | 
						
						
							| 5 | 
							
								
							 | 
							dprdpr.s | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							dprdpr.1 | 
							 |-  ( ph -> S C_ ( Z ` T ) )  | 
						
						
							| 7 | 
							
								
							 | 
							dprdpr.2 | 
							 |-  ( ph -> ( S i^i T ) = { .0. } ) | 
						
						
							| 8 | 
							
								
							 | 
							xpscf | 
							 |-  ( { <. (/) , S >. , <. 1o , T >. } : 2o --> ( SubGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) ) | 
						
						
							| 9 | 
							
								3 4 8
							 | 
							sylanbrc | 
							 |-  ( ph -> { <. (/) , S >. , <. 1o , T >. } : 2o --> ( SubGrp ` G ) ) | 
						
						
							| 10 | 
							
								
							 | 
							1n0 | 
							 |-  1o =/= (/)  | 
						
						
							| 11 | 
							
								10
							 | 
							necomi | 
							 |-  (/) =/= 1o  | 
						
						
							| 12 | 
							
								
							 | 
							disjsn2 | 
							 |-  ( (/) =/= 1o -> ( { (/) } i^i { 1o } ) = (/) ) | 
						
						
							| 13 | 
							
								11 12
							 | 
							mp1i | 
							 |-  ( ph -> ( { (/) } i^i { 1o } ) = (/) ) | 
						
						
							| 14 | 
							
								
							 | 
							df2o3 | 
							 |-  2o = { (/) , 1o } | 
						
						
							| 15 | 
							
								
							 | 
							df-pr | 
							 |-  { (/) , 1o } = ( { (/) } u. { 1o } ) | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtri | 
							 |-  2o = ( { (/) } u. { 1o } ) | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( ph -> 2o = ( { (/) } u. { 1o } ) ) | 
						
						
							| 18 | 
							
								1 2 3 4
							 | 
							dmdprdpr | 
							 |-  ( ph -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( S C_ ( Z ` T ) /\ ( S i^i T ) = { .0. } ) ) ) | 
						
						
							| 19 | 
							
								6 7 18
							 | 
							mpbir2and | 
							 |-  ( ph -> G dom DProd { <. (/) , S >. , <. 1o , T >. } ) | 
						
						
							| 20 | 
							
								9 13 17 5 19
							 | 
							dprdsplit | 
							 |-  ( ph -> ( G DProd { <. (/) , S >. , <. 1o , T >. } ) = ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) .(+) ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) ) | 
						
						
							| 21 | 
							
								9
							 | 
							ffnd | 
							 |-  ( ph -> { <. (/) , S >. , <. 1o , T >. } Fn 2o ) | 
						
						
							| 22 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 23 | 
							
								22
							 | 
							prid1 | 
							 |-  (/) e. { (/) , 1o } | 
						
						
							| 24 | 
							
								23 14
							 | 
							eleqtrri | 
							 |-  (/) e. 2o  | 
						
						
							| 25 | 
							
								
							 | 
							fnressn | 
							 |-  ( ( { <. (/) , S >. , <. 1o , T >. } Fn 2o /\ (/) e. 2o ) -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } ) | 
						
						
							| 26 | 
							
								21 24 25
							 | 
							sylancl | 
							 |-  ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } ) | 
						
						
							| 27 | 
							
								
							 | 
							fvpr0o | 
							 |-  ( S e. ( SubGrp ` G ) -> ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) = S ) | 
						
						
							| 28 | 
							
								3 27
							 | 
							syl | 
							 |-  ( ph -> ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) = S ) | 
						
						
							| 29 | 
							
								28
							 | 
							opeq2d | 
							 |-  ( ph -> <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. = <. (/) , S >. ) | 
						
						
							| 30 | 
							
								29
							 | 
							sneqd | 
							 |-  ( ph -> { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } = { <. (/) , S >. } ) | 
						
						
							| 31 | 
							
								26 30
							 | 
							eqtrd | 
							 |-  ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , S >. } ) | 
						
						
							| 32 | 
							
								31
							 | 
							oveq2d | 
							 |-  ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) = ( G DProd { <. (/) , S >. } ) ) | 
						
						
							| 33 | 
							
								
							 | 
							dprdsn | 
							 |-  ( ( (/) e. _V /\ S e. ( SubGrp ` G ) ) -> ( G dom DProd { <. (/) , S >. } /\ ( G DProd { <. (/) , S >. } ) = S ) ) | 
						
						
							| 34 | 
							
								22 3 33
							 | 
							sylancr | 
							 |-  ( ph -> ( G dom DProd { <. (/) , S >. } /\ ( G DProd { <. (/) , S >. } ) = S ) ) | 
						
						
							| 35 | 
							
								34
							 | 
							simprd | 
							 |-  ( ph -> ( G DProd { <. (/) , S >. } ) = S ) | 
						
						
							| 36 | 
							
								32 35
							 | 
							eqtrd | 
							 |-  ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) = S ) | 
						
						
							| 37 | 
							
								
							 | 
							1oex | 
							 |-  1o e. _V  | 
						
						
							| 38 | 
							
								37
							 | 
							prid2 | 
							 |-  1o e. { (/) , 1o } | 
						
						
							| 39 | 
							
								38 14
							 | 
							eleqtrri | 
							 |-  1o e. 2o  | 
						
						
							| 40 | 
							
								
							 | 
							fnressn | 
							 |-  ( ( { <. (/) , S >. , <. 1o , T >. } Fn 2o /\ 1o e. 2o ) -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } ) | 
						
						
							| 41 | 
							
								21 39 40
							 | 
							sylancl | 
							 |-  ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } ) | 
						
						
							| 42 | 
							
								
							 | 
							fvpr1o | 
							 |-  ( T e. ( SubGrp ` G ) -> ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) = T ) | 
						
						
							| 43 | 
							
								4 42
							 | 
							syl | 
							 |-  ( ph -> ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) = T ) | 
						
						
							| 44 | 
							
								43
							 | 
							opeq2d | 
							 |-  ( ph -> <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. = <. 1o , T >. ) | 
						
						
							| 45 | 
							
								44
							 | 
							sneqd | 
							 |-  ( ph -> { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } = { <. 1o , T >. } ) | 
						
						
							| 46 | 
							
								41 45
							 | 
							eqtrd | 
							 |-  ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , T >. } ) | 
						
						
							| 47 | 
							
								46
							 | 
							oveq2d | 
							 |-  ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) = ( G DProd { <. 1o , T >. } ) ) | 
						
						
							| 48 | 
							
								
							 | 
							1on | 
							 |-  1o e. On  | 
						
						
							| 49 | 
							
								
							 | 
							dprdsn | 
							 |-  ( ( 1o e. On /\ T e. ( SubGrp ` G ) ) -> ( G dom DProd { <. 1o , T >. } /\ ( G DProd { <. 1o , T >. } ) = T ) ) | 
						
						
							| 50 | 
							
								48 4 49
							 | 
							sylancr | 
							 |-  ( ph -> ( G dom DProd { <. 1o , T >. } /\ ( G DProd { <. 1o , T >. } ) = T ) ) | 
						
						
							| 51 | 
							
								50
							 | 
							simprd | 
							 |-  ( ph -> ( G DProd { <. 1o , T >. } ) = T ) | 
						
						
							| 52 | 
							
								47 51
							 | 
							eqtrd | 
							 |-  ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) = T ) | 
						
						
							| 53 | 
							
								36 52
							 | 
							oveq12d | 
							 |-  ( ph -> ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) .(+) ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = ( S .(+) T ) ) | 
						
						
							| 54 | 
							
								20 53
							 | 
							eqtrd | 
							 |-  ( ph -> ( G DProd { <. (/) , S >. , <. 1o , T >. } ) = ( S .(+) T ) ) |