| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdres.1 |
|- ( ph -> G dom DProd S ) |
| 2 |
|
dprdres.2 |
|- ( ph -> dom S = I ) |
| 3 |
|
dprdres.3 |
|- ( ph -> A C_ I ) |
| 4 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
| 5 |
1 4
|
syl |
|- ( ph -> G e. Grp ) |
| 6 |
1 2
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 7 |
6 3
|
fssresd |
|- ( ph -> ( S |` A ) : A --> ( SubGrp ` G ) ) |
| 8 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> G dom DProd S ) |
| 9 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> dom S = I ) |
| 10 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> A C_ I ) |
| 11 |
|
simplr |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> x e. A ) |
| 12 |
10 11
|
sseldd |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> x e. I ) |
| 13 |
|
eldifi |
|- ( y e. ( A \ { x } ) -> y e. A ) |
| 14 |
13
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> y e. A ) |
| 15 |
10 14
|
sseldd |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> y e. I ) |
| 16 |
|
eldifsni |
|- ( y e. ( A \ { x } ) -> y =/= x ) |
| 17 |
16
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> y =/= x ) |
| 18 |
17
|
necomd |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> x =/= y ) |
| 19 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
| 20 |
8 9 12 15 18 19
|
dprdcntz |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 21 |
11
|
fvresd |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( ( S |` A ) ` x ) = ( S ` x ) ) |
| 22 |
14
|
fvresd |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( ( S |` A ) ` y ) = ( S ` y ) ) |
| 23 |
22
|
fveq2d |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) = ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 24 |
20 21 23
|
3sstr4d |
|- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) ) |
| 25 |
24
|
ralrimiva |
|- ( ( ph /\ x e. A ) -> A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) ) |
| 26 |
|
fvres |
|- ( x e. A -> ( ( S |` A ) ` x ) = ( S ` x ) ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ x e. A ) -> ( ( S |` A ) ` x ) = ( S ` x ) ) |
| 28 |
27
|
ineq1d |
|- ( ( ph /\ x e. A ) -> ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) ) |
| 29 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 30 |
29
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 31 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 32 |
5 30 31
|
3syl |
|- ( ph -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ x e. A ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 34 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
| 35 |
|
resss |
|- ( S |` A ) C_ S |
| 36 |
|
imass1 |
|- ( ( S |` A ) C_ S -> ( ( S |` A ) " ( A \ { x } ) ) C_ ( S " ( A \ { x } ) ) ) |
| 37 |
35 36
|
ax-mp |
|- ( ( S |` A ) " ( A \ { x } ) ) C_ ( S " ( A \ { x } ) ) |
| 38 |
3
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ I ) |
| 39 |
|
ssdif |
|- ( A C_ I -> ( A \ { x } ) C_ ( I \ { x } ) ) |
| 40 |
|
imass2 |
|- ( ( A \ { x } ) C_ ( I \ { x } ) -> ( S " ( A \ { x } ) ) C_ ( S " ( I \ { x } ) ) ) |
| 41 |
38 39 40
|
3syl |
|- ( ( ph /\ x e. A ) -> ( S " ( A \ { x } ) ) C_ ( S " ( I \ { x } ) ) ) |
| 42 |
37 41
|
sstrid |
|- ( ( ph /\ x e. A ) -> ( ( S |` A ) " ( A \ { x } ) ) C_ ( S " ( I \ { x } ) ) ) |
| 43 |
42
|
unissd |
|- ( ( ph /\ x e. A ) -> U. ( ( S |` A ) " ( A \ { x } ) ) C_ U. ( S " ( I \ { x } ) ) ) |
| 44 |
|
imassrn |
|- ( S " ( I \ { x } ) ) C_ ran S |
| 45 |
6
|
frnd |
|- ( ph -> ran S C_ ( SubGrp ` G ) ) |
| 46 |
29
|
subgss |
|- ( x e. ( SubGrp ` G ) -> x C_ ( Base ` G ) ) |
| 47 |
|
velpw |
|- ( x e. ~P ( Base ` G ) <-> x C_ ( Base ` G ) ) |
| 48 |
46 47
|
sylibr |
|- ( x e. ( SubGrp ` G ) -> x e. ~P ( Base ` G ) ) |
| 49 |
48
|
ssriv |
|- ( SubGrp ` G ) C_ ~P ( Base ` G ) |
| 50 |
45 49
|
sstrdi |
|- ( ph -> ran S C_ ~P ( Base ` G ) ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ x e. A ) -> ran S C_ ~P ( Base ` G ) ) |
| 52 |
44 51
|
sstrid |
|- ( ( ph /\ x e. A ) -> ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) |
| 53 |
|
sspwuni |
|- ( ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
| 54 |
52 53
|
sylib |
|- ( ( ph /\ x e. A ) -> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
| 55 |
33 34 43 54
|
mrcssd |
|- ( ( ph /\ x e. A ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 56 |
|
sslin |
|- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) C_ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 57 |
55 56
|
syl |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) C_ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 58 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> G dom DProd S ) |
| 59 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> dom S = I ) |
| 60 |
3
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. I ) |
| 61 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 62 |
58 59 60 61 34
|
dprddisj |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 63 |
57 62
|
sseqtrd |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 64 |
6
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 65 |
60 64
|
syldan |
|- ( ( ph /\ x e. A ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 66 |
61
|
subg0cl |
|- ( ( S ` x ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( S ` x ) ) |
| 67 |
65 66
|
syl |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( S ` x ) ) |
| 68 |
43 54
|
sstrd |
|- ( ( ph /\ x e. A ) -> U. ( ( S |` A ) " ( A \ { x } ) ) C_ ( Base ` G ) ) |
| 69 |
34
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( ( S |` A ) " ( A \ { x } ) ) C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 70 |
33 68 69
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 71 |
61
|
subg0cl |
|- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) |
| 72 |
70 71
|
syl |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) |
| 73 |
67 72
|
elind |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) ) |
| 74 |
73
|
snssd |
|- ( ( ph /\ x e. A ) -> { ( 0g ` G ) } C_ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) ) |
| 75 |
63 74
|
eqssd |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 76 |
28 75
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 77 |
25 76
|
jca |
|- ( ( ph /\ x e. A ) -> ( A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) /\ ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) |
| 78 |
77
|
ralrimiva |
|- ( ph -> A. x e. A ( A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) /\ ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) |
| 79 |
1 2
|
dprddomcld |
|- ( ph -> I e. _V ) |
| 80 |
79 3
|
ssexd |
|- ( ph -> A e. _V ) |
| 81 |
7
|
fdmd |
|- ( ph -> dom ( S |` A ) = A ) |
| 82 |
19 61 34
|
dmdprd |
|- ( ( A e. _V /\ dom ( S |` A ) = A ) -> ( G dom DProd ( S |` A ) <-> ( G e. Grp /\ ( S |` A ) : A --> ( SubGrp ` G ) /\ A. x e. A ( A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) /\ ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 83 |
80 81 82
|
syl2anc |
|- ( ph -> ( G dom DProd ( S |` A ) <-> ( G e. Grp /\ ( S |` A ) : A --> ( SubGrp ` G ) /\ A. x e. A ( A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) /\ ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 84 |
5 7 78 83
|
mpbir3and |
|- ( ph -> G dom DProd ( S |` A ) ) |
| 85 |
|
rnss |
|- ( ( S |` A ) C_ S -> ran ( S |` A ) C_ ran S ) |
| 86 |
|
uniss |
|- ( ran ( S |` A ) C_ ran S -> U. ran ( S |` A ) C_ U. ran S ) |
| 87 |
35 85 86
|
mp2b |
|- U. ran ( S |` A ) C_ U. ran S |
| 88 |
87
|
a1i |
|- ( ph -> U. ran ( S |` A ) C_ U. ran S ) |
| 89 |
|
sspwuni |
|- ( ran S C_ ~P ( Base ` G ) <-> U. ran S C_ ( Base ` G ) ) |
| 90 |
50 89
|
sylib |
|- ( ph -> U. ran S C_ ( Base ` G ) ) |
| 91 |
32 34 88 90
|
mrcssd |
|- ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S |` A ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 92 |
34
|
dprdspan |
|- ( G dom DProd ( S |` A ) -> ( G DProd ( S |` A ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S |` A ) ) ) |
| 93 |
84 92
|
syl |
|- ( ph -> ( G DProd ( S |` A ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S |` A ) ) ) |
| 94 |
34
|
dprdspan |
|- ( G dom DProd S -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 95 |
1 94
|
syl |
|- ( ph -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 96 |
91 93 95
|
3sstr4d |
|- ( ph -> ( G DProd ( S |` A ) ) C_ ( G DProd S ) ) |
| 97 |
84 96
|
jca |
|- ( ph -> ( G dom DProd ( S |` A ) /\ ( G DProd ( S |` A ) ) C_ ( G DProd S ) ) ) |