| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							 |-  ( Cntz ` G ) = ( Cntz ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` G ) = ( 0g ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) )  | 
						
						
							| 4 | 
							
								
							 | 
							subgrcl | 
							 |-  ( S e. ( SubGrp ` G ) -> G e. Grp )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> G e. Grp )  | 
						
						
							| 6 | 
							
								
							 | 
							snex | 
							 |-  { A } e. _V | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { A } e. _V ) | 
						
						
							| 8 | 
							
								
							 | 
							f1osng | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } -1-1-onto-> { S } ) | 
						
						
							| 9 | 
							
								
							 | 
							f1of | 
							 |-  ( { <. A , S >. } : { A } -1-1-onto-> { S } -> { <. A , S >. } : { A } --> { S } ) | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } --> { S } ) | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> S e. ( SubGrp ` G ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							snssd | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { S } C_ ( SubGrp ` G ) ) | 
						
						
							| 13 | 
							
								10 12
							 | 
							fssd | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } --> ( SubGrp ` G ) ) | 
						
						
							| 14 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x e. { A } ) | 
						
						
							| 15 | 
							
								
							 | 
							elsni | 
							 |-  ( x e. { A } -> x = A ) | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x = A ) | 
						
						
							| 17 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> y e. { A } ) | 
						
						
							| 18 | 
							
								
							 | 
							elsni | 
							 |-  ( y e. { A } -> y = A ) | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> y = A ) | 
						
						
							| 20 | 
							
								16 19
							 | 
							eqtr4d | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x = y ) | 
						
						
							| 21 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x =/= y ) | 
						
						
							| 22 | 
							
								20 21
							 | 
							pm2.21ddne | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> ( { <. A , S >. } ` x ) C_ ( ( Cntz ` G ) ` ( { <. A , S >. } ` y ) ) ) | 
						
						
							| 23 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> G e. Grp ) | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 25 | 
							
								24
							 | 
							subgacs | 
							 |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							acsmre | 
							 |-  ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) )  | 
						
						
							| 27 | 
							
								23 25 26
							 | 
							3syl | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) | 
						
						
							| 28 | 
							
								15
							 | 
							adantl | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> x = A ) | 
						
						
							| 29 | 
							
								28
							 | 
							sneqd | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { x } = { A } ) | 
						
						
							| 30 | 
							
								29
							 | 
							difeq2d | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { A } \ { x } ) = ( { A } \ { A } ) ) | 
						
						
							| 31 | 
							
								
							 | 
							difid | 
							 |-  ( { A } \ { A } ) = (/) | 
						
						
							| 32 | 
							
								30 31
							 | 
							eqtrdi | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { A } \ { x } ) = (/) ) | 
						
						
							| 33 | 
							
								32
							 | 
							imaeq2d | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } " ( { A } \ { x } ) ) = ( { <. A , S >. } " (/) ) ) | 
						
						
							| 34 | 
							
								
							 | 
							ima0 | 
							 |-  ( { <. A , S >. } " (/) ) = (/) | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqtrdi | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } " ( { A } \ { x } ) ) = (/) ) | 
						
						
							| 36 | 
							
								35
							 | 
							unieqd | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) = U. (/) ) | 
						
						
							| 37 | 
							
								
							 | 
							uni0 | 
							 |-  U. (/) = (/)  | 
						
						
							| 38 | 
							
								36 37
							 | 
							eqtrdi | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) = (/) ) | 
						
						
							| 39 | 
							
								
							 | 
							0ss | 
							 |-  (/) C_ { ( 0g ` G ) } | 
						
						
							| 40 | 
							
								39
							 | 
							a1i | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> (/) C_ { ( 0g ` G ) } ) | 
						
						
							| 41 | 
							
								38 40
							 | 
							eqsstrd | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) C_ { ( 0g ` G ) } ) | 
						
						
							| 42 | 
							
								2
							 | 
							0subg | 
							 |-  ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) | 
						
						
							| 43 | 
							
								23 42
							 | 
							syl | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) | 
						
						
							| 44 | 
							
								3
							 | 
							mrcsscl | 
							 |-  ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( { <. A , S >. } " ( { A } \ { x } ) ) C_ { ( 0g ` G ) } /\ { ( 0g ` G ) } e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ { ( 0g ` G ) } ) | 
						
						
							| 45 | 
							
								27 41 43 44
							 | 
							syl3anc | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ { ( 0g ` G ) } ) | 
						
						
							| 46 | 
							
								2
							 | 
							subg0cl | 
							 |-  ( S e. ( SubGrp ` G ) -> ( 0g ` G ) e. S )  | 
						
						
							| 47 | 
							
								46
							 | 
							ad2antlr | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( 0g ` G ) e. S ) | 
						
						
							| 48 | 
							
								15
							 | 
							fveq2d | 
							 |-  ( x e. { A } -> ( { <. A , S >. } ` x ) = ( { <. A , S >. } ` A ) ) | 
						
						
							| 49 | 
							
								
							 | 
							fvsng | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( { <. A , S >. } ` A ) = S ) | 
						
						
							| 50 | 
							
								48 49
							 | 
							sylan9eqr | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } ` x ) = S ) | 
						
						
							| 51 | 
							
								47 50
							 | 
							eleqtrrd | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( 0g ` G ) e. ( { <. A , S >. } ` x ) ) | 
						
						
							| 52 | 
							
								51
							 | 
							snssd | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { ( 0g ` G ) } C_ ( { <. A , S >. } ` x ) ) | 
						
						
							| 53 | 
							
								45 52
							 | 
							sstrd | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ ( { <. A , S >. } ` x ) ) | 
						
						
							| 54 | 
							
								
							 | 
							sseqin2 | 
							 |-  ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ ( { <. A , S >. } ` x ) <-> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) | 
						
						
							| 55 | 
							
								53 54
							 | 
							sylib | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) | 
						
						
							| 56 | 
							
								55 45
							 | 
							eqsstrd | 
							 |-  ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) | 
						
						
							| 57 | 
							
								1 2 3 5 7 13 22 56
							 | 
							dmdprdd | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> G dom DProd { <. A , S >. } ) | 
						
						
							| 58 | 
							
								3
							 | 
							dprdspan | 
							 |-  ( G dom DProd { <. A , S >. } -> ( G DProd { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) ) | 
						
						
							| 59 | 
							
								57 58
							 | 
							syl | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G DProd { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) ) | 
						
						
							| 60 | 
							
								
							 | 
							rnsnopg | 
							 |-  ( A e. V -> ran { <. A , S >. } = { S } ) | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ran { <. A , S >. } = { S } ) | 
						
						
							| 62 | 
							
								61
							 | 
							unieqd | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. ran { <. A , S >. } = U. { S } ) | 
						
						
							| 63 | 
							
								
							 | 
							unisng | 
							 |-  ( S e. ( SubGrp ` G ) -> U. { S } = S ) | 
						
						
							| 64 | 
							
								63
							 | 
							adantl | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. { S } = S ) | 
						
						
							| 65 | 
							
								62 64
							 | 
							eqtrd | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. ran { <. A , S >. } = S ) | 
						
						
							| 66 | 
							
								65
							 | 
							fveq2d | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` S ) ) | 
						
						
							| 67 | 
							
								5 25 26
							 | 
							3syl | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) )  | 
						
						
							| 68 | 
							
								3
							 | 
							mrcid | 
							 |-  ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` S ) = S )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							sylancom | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` S ) = S )  | 
						
						
							| 70 | 
							
								66 69
							 | 
							eqtrd | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) = S ) | 
						
						
							| 71 | 
							
								59 70
							 | 
							eqtrd | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G DProd { <. A , S >. } ) = S ) | 
						
						
							| 72 | 
							
								57 71
							 | 
							jca | 
							 |-  ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G dom DProd { <. A , S >. } /\ ( G DProd { <. A , S >. } ) = S ) ) |