Step |
Hyp |
Ref |
Expression |
1 |
|
dprdspan.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
2 |
|
id |
|- ( G dom DProd S -> G dom DProd S ) |
3 |
|
eqidd |
|- ( G dom DProd S -> dom S = dom S ) |
4 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
6 |
5
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
7 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
8 |
4 6 7
|
3syl |
|- ( G dom DProd S -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
9 |
|
dprdf |
|- ( G dom DProd S -> S : dom S --> ( SubGrp ` G ) ) |
10 |
9
|
ffnd |
|- ( G dom DProd S -> S Fn dom S ) |
11 |
|
fniunfv |
|- ( S Fn dom S -> U_ k e. dom S ( S ` k ) = U. ran S ) |
12 |
10 11
|
syl |
|- ( G dom DProd S -> U_ k e. dom S ( S ` k ) = U. ran S ) |
13 |
|
simpl |
|- ( ( G dom DProd S /\ k e. dom S ) -> G dom DProd S ) |
14 |
|
eqidd |
|- ( ( G dom DProd S /\ k e. dom S ) -> dom S = dom S ) |
15 |
|
simpr |
|- ( ( G dom DProd S /\ k e. dom S ) -> k e. dom S ) |
16 |
13 14 15
|
dprdub |
|- ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ ( G DProd S ) ) |
17 |
16
|
ralrimiva |
|- ( G dom DProd S -> A. k e. dom S ( S ` k ) C_ ( G DProd S ) ) |
18 |
|
iunss |
|- ( U_ k e. dom S ( S ` k ) C_ ( G DProd S ) <-> A. k e. dom S ( S ` k ) C_ ( G DProd S ) ) |
19 |
17 18
|
sylibr |
|- ( G dom DProd S -> U_ k e. dom S ( S ` k ) C_ ( G DProd S ) ) |
20 |
12 19
|
eqsstrrd |
|- ( G dom DProd S -> U. ran S C_ ( G DProd S ) ) |
21 |
5
|
dprdssv |
|- ( G DProd S ) C_ ( Base ` G ) |
22 |
20 21
|
sstrdi |
|- ( G dom DProd S -> U. ran S C_ ( Base ` G ) ) |
23 |
1
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ ( Base ` G ) ) -> ( K ` U. ran S ) e. ( SubGrp ` G ) ) |
24 |
8 22 23
|
syl2anc |
|- ( G dom DProd S -> ( K ` U. ran S ) e. ( SubGrp ` G ) ) |
25 |
|
eqimss |
|- ( U_ k e. dom S ( S ` k ) = U. ran S -> U_ k e. dom S ( S ` k ) C_ U. ran S ) |
26 |
12 25
|
syl |
|- ( G dom DProd S -> U_ k e. dom S ( S ` k ) C_ U. ran S ) |
27 |
|
iunss |
|- ( U_ k e. dom S ( S ` k ) C_ U. ran S <-> A. k e. dom S ( S ` k ) C_ U. ran S ) |
28 |
26 27
|
sylib |
|- ( G dom DProd S -> A. k e. dom S ( S ` k ) C_ U. ran S ) |
29 |
28
|
r19.21bi |
|- ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ U. ran S ) |
30 |
8 1 22
|
mrcssidd |
|- ( G dom DProd S -> U. ran S C_ ( K ` U. ran S ) ) |
31 |
30
|
adantr |
|- ( ( G dom DProd S /\ k e. dom S ) -> U. ran S C_ ( K ` U. ran S ) ) |
32 |
29 31
|
sstrd |
|- ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ ( K ` U. ran S ) ) |
33 |
2 3 24 32
|
dprdlub |
|- ( G dom DProd S -> ( G DProd S ) C_ ( K ` U. ran S ) ) |
34 |
|
dprdsubg |
|- ( G dom DProd S -> ( G DProd S ) e. ( SubGrp ` G ) ) |
35 |
1
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ ( G DProd S ) /\ ( G DProd S ) e. ( SubGrp ` G ) ) -> ( K ` U. ran S ) C_ ( G DProd S ) ) |
36 |
8 20 34 35
|
syl3anc |
|- ( G dom DProd S -> ( K ` U. ran S ) C_ ( G DProd S ) ) |
37 |
33 36
|
eqssd |
|- ( G dom DProd S -> ( G DProd S ) = ( K ` U. ran S ) ) |