| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdspan.k | 
							 |-  K = ( mrCls ` ( SubGrp ` G ) )  | 
						
						
							| 2 | 
							
								
							 | 
							id | 
							 |-  ( G dom DProd S -> G dom DProd S )  | 
						
						
							| 3 | 
							
								
							 | 
							eqidd | 
							 |-  ( G dom DProd S -> dom S = dom S )  | 
						
						
							| 4 | 
							
								
							 | 
							dprdgrp | 
							 |-  ( G dom DProd S -> G e. Grp )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 6 | 
							
								5
							 | 
							subgacs | 
							 |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							acsmre | 
							 |-  ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							3syl | 
							 |-  ( G dom DProd S -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							dprdf | 
							 |-  ( G dom DProd S -> S : dom S --> ( SubGrp ` G ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ffnd | 
							 |-  ( G dom DProd S -> S Fn dom S )  | 
						
						
							| 11 | 
							
								
							 | 
							fniunfv | 
							 |-  ( S Fn dom S -> U_ k e. dom S ( S ` k ) = U. ran S )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							 |-  ( G dom DProd S -> U_ k e. dom S ( S ` k ) = U. ran S )  | 
						
						
							| 13 | 
							
								
							 | 
							simpl | 
							 |-  ( ( G dom DProd S /\ k e. dom S ) -> G dom DProd S )  | 
						
						
							| 14 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( G dom DProd S /\ k e. dom S ) -> dom S = dom S )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							 |-  ( ( G dom DProd S /\ k e. dom S ) -> k e. dom S )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							dprdub | 
							 |-  ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ ( G DProd S ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ralrimiva | 
							 |-  ( G dom DProd S -> A. k e. dom S ( S ` k ) C_ ( G DProd S ) )  | 
						
						
							| 18 | 
							
								
							 | 
							iunss | 
							 |-  ( U_ k e. dom S ( S ` k ) C_ ( G DProd S ) <-> A. k e. dom S ( S ` k ) C_ ( G DProd S ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sylibr | 
							 |-  ( G dom DProd S -> U_ k e. dom S ( S ` k ) C_ ( G DProd S ) )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							eqsstrrd | 
							 |-  ( G dom DProd S -> U. ran S C_ ( G DProd S ) )  | 
						
						
							| 21 | 
							
								5
							 | 
							dprdssv | 
							 |-  ( G DProd S ) C_ ( Base ` G )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sstrdi | 
							 |-  ( G dom DProd S -> U. ran S C_ ( Base ` G ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							mrccl | 
							 |-  ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ ( Base ` G ) ) -> ( K ` U. ran S ) e. ( SubGrp ` G ) )  | 
						
						
							| 24 | 
							
								8 22 23
							 | 
							syl2anc | 
							 |-  ( G dom DProd S -> ( K ` U. ran S ) e. ( SubGrp ` G ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eqimss | 
							 |-  ( U_ k e. dom S ( S ` k ) = U. ran S -> U_ k e. dom S ( S ` k ) C_ U. ran S )  | 
						
						
							| 26 | 
							
								12 25
							 | 
							syl | 
							 |-  ( G dom DProd S -> U_ k e. dom S ( S ` k ) C_ U. ran S )  | 
						
						
							| 27 | 
							
								
							 | 
							iunss | 
							 |-  ( U_ k e. dom S ( S ` k ) C_ U. ran S <-> A. k e. dom S ( S ` k ) C_ U. ran S )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylib | 
							 |-  ( G dom DProd S -> A. k e. dom S ( S ` k ) C_ U. ran S )  | 
						
						
							| 29 | 
							
								28
							 | 
							r19.21bi | 
							 |-  ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ U. ran S )  | 
						
						
							| 30 | 
							
								8 1 22
							 | 
							mrcssidd | 
							 |-  ( G dom DProd S -> U. ran S C_ ( K ` U. ran S ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( G dom DProd S /\ k e. dom S ) -> U. ran S C_ ( K ` U. ran S ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							sstrd | 
							 |-  ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ ( K ` U. ran S ) )  | 
						
						
							| 33 | 
							
								2 3 24 32
							 | 
							dprdlub | 
							 |-  ( G dom DProd S -> ( G DProd S ) C_ ( K ` U. ran S ) )  | 
						
						
							| 34 | 
							
								
							 | 
							dprdsubg | 
							 |-  ( G dom DProd S -> ( G DProd S ) e. ( SubGrp ` G ) )  | 
						
						
							| 35 | 
							
								1
							 | 
							mrcsscl | 
							 |-  ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ ( G DProd S ) /\ ( G DProd S ) e. ( SubGrp ` G ) ) -> ( K ` U. ran S ) C_ ( G DProd S ) )  | 
						
						
							| 36 | 
							
								8 20 34 35
							 | 
							syl3anc | 
							 |-  ( G dom DProd S -> ( K ` U. ran S ) C_ ( G DProd S ) )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							eqssd | 
							 |-  ( G dom DProd S -> ( G DProd S ) = ( K ` U. ran S ) )  |