| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdsplit.2 | 
							 |-  ( ph -> S : I --> ( SubGrp ` G ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdsplit.i | 
							 |-  ( ph -> ( C i^i D ) = (/) )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdsplit.u | 
							 |-  ( ph -> I = ( C u. D ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dprdsplit.s | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							dprdsplit.1 | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 6 | 
							
								1
							 | 
							fdmd | 
							 |-  ( ph -> dom S = I )  | 
						
						
							| 7 | 
							
								
							 | 
							ssun1 | 
							 |-  C C_ ( C u. D )  | 
						
						
							| 8 | 
							
								7 3
							 | 
							sseqtrrid | 
							 |-  ( ph -> C C_ I )  | 
						
						
							| 9 | 
							
								5 6 8
							 | 
							dprdres | 
							 |-  ( ph -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							simpld | 
							 |-  ( ph -> G dom DProd ( S |` C ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dprdsubg | 
							 |-  ( G dom DProd ( S |` C ) -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							 |-  ( ph -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ssun2 | 
							 |-  D C_ ( C u. D )  | 
						
						
							| 14 | 
							
								13 3
							 | 
							sseqtrrid | 
							 |-  ( ph -> D C_ I )  | 
						
						
							| 15 | 
							
								5 6 14
							 | 
							dprdres | 
							 |-  ( ph -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simpld | 
							 |-  ( ph -> G dom DProd ( S |` D ) )  | 
						
						
							| 17 | 
							
								
							 | 
							dprdsubg | 
							 |-  ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ph -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( Cntz ` G ) = ( Cntz ` G )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` G ) = ( 0g ` G )  | 
						
						
							| 21 | 
							
								1 2 3 19 20
							 | 
							dmdprdsplit | 
							 |-  ( ph -> ( G dom DProd S <-> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { ( 0g ` G ) } ) ) ) | 
						
						
							| 22 | 
							
								5 21
							 | 
							mpbid | 
							 |-  ( ph -> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { ( 0g ` G ) } ) ) | 
						
						
							| 23 | 
							
								22
							 | 
							simp2d | 
							 |-  ( ph -> ( G DProd ( S |` C ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 24 | 
							
								4 19
							 | 
							lsmsubg | 
							 |-  ( ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` C ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` D ) ) ) ) -> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 25 | 
							
								12 18 23 24
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 26 | 
							
								3
							 | 
							eleq2d | 
							 |-  ( ph -> ( x e. I <-> x e. ( C u. D ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							elun | 
							 |-  ( x e. ( C u. D ) <-> ( x e. C \/ x e. D ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							bitrdi | 
							 |-  ( ph -> ( x e. I <-> ( x e. C \/ x e. D ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							biimpa | 
							 |-  ( ( ph /\ x e. I ) -> ( x e. C \/ x e. D ) )  | 
						
						
							| 30 | 
							
								
							 | 
							fvres | 
							 |-  ( x e. C -> ( ( S |` C ) ` x ) = ( S ` x ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) = ( S ` x ) )  | 
						
						
							| 32 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. C ) -> G dom DProd ( S |` C ) )  | 
						
						
							| 33 | 
							
								1 8
							 | 
							fssresd | 
							 |-  ( ph -> ( S |` C ) : C --> ( SubGrp ` G ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							fdmd | 
							 |-  ( ph -> dom ( S |` C ) = C )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. C ) -> dom ( S |` C ) = C )  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. C ) -> x e. C )  | 
						
						
							| 37 | 
							
								32 35 36
							 | 
							dprdub | 
							 |-  ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) C_ ( G DProd ( S |` C ) ) )  | 
						
						
							| 38 | 
							
								31 37
							 | 
							eqsstrrd | 
							 |-  ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( G DProd ( S |` C ) ) )  | 
						
						
							| 39 | 
							
								4
							 | 
							lsmub1 | 
							 |-  ( ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) -> ( G DProd ( S |` C ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 40 | 
							
								12 18 39
							 | 
							syl2anc | 
							 |-  ( ph -> ( G DProd ( S |` C ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. C ) -> ( G DProd ( S |` C ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 42 | 
							
								38 41
							 | 
							sstrd | 
							 |-  ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							fvres | 
							 |-  ( x e. D -> ( ( S |` D ) ` x ) = ( S ` x ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. D ) -> ( ( S |` D ) ` x ) = ( S ` x ) )  | 
						
						
							| 45 | 
							
								16
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. D ) -> G dom DProd ( S |` D ) )  | 
						
						
							| 46 | 
							
								1 14
							 | 
							fssresd | 
							 |-  ( ph -> ( S |` D ) : D --> ( SubGrp ` G ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							fdmd | 
							 |-  ( ph -> dom ( S |` D ) = D )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. D ) -> dom ( S |` D ) = D )  | 
						
						
							| 49 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. D ) -> x e. D )  | 
						
						
							| 50 | 
							
								45 48 49
							 | 
							dprdub | 
							 |-  ( ( ph /\ x e. D ) -> ( ( S |` D ) ` x ) C_ ( G DProd ( S |` D ) ) )  | 
						
						
							| 51 | 
							
								44 50
							 | 
							eqsstrrd | 
							 |-  ( ( ph /\ x e. D ) -> ( S ` x ) C_ ( G DProd ( S |` D ) ) )  | 
						
						
							| 52 | 
							
								4
							 | 
							lsmub2 | 
							 |-  ( ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) -> ( G DProd ( S |` D ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 53 | 
							
								12 18 52
							 | 
							syl2anc | 
							 |-  ( ph -> ( G DProd ( S |` D ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. D ) -> ( G DProd ( S |` D ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 55 | 
							
								51 54
							 | 
							sstrd | 
							 |-  ( ( ph /\ x e. D ) -> ( S ` x ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 56 | 
							
								42 55
							 | 
							jaodan | 
							 |-  ( ( ph /\ ( x e. C \/ x e. D ) ) -> ( S ` x ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 57 | 
							
								29 56
							 | 
							syldan | 
							 |-  ( ( ph /\ x e. I ) -> ( S ` x ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 58 | 
							
								5 6 25 57
							 | 
							dprdlub | 
							 |-  ( ph -> ( G DProd S ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 59 | 
							
								9
							 | 
							simprd | 
							 |-  ( ph -> ( G DProd ( S |` C ) ) C_ ( G DProd S ) )  | 
						
						
							| 60 | 
							
								15
							 | 
							simprd | 
							 |-  ( ph -> ( G DProd ( S |` D ) ) C_ ( G DProd S ) )  | 
						
						
							| 61 | 
							
								
							 | 
							dprdsubg | 
							 |-  ( G dom DProd S -> ( G DProd S ) e. ( SubGrp ` G ) )  | 
						
						
							| 62 | 
							
								5 61
							 | 
							syl | 
							 |-  ( ph -> ( G DProd S ) e. ( SubGrp ` G ) )  | 
						
						
							| 63 | 
							
								4
							 | 
							lsmlub | 
							 |-  ( ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) /\ ( G DProd S ) e. ( SubGrp ` G ) ) -> ( ( ( G DProd ( S |` C ) ) C_ ( G DProd S ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) <-> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) C_ ( G DProd S ) ) )  | 
						
						
							| 64 | 
							
								12 18 62 63
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( ( G DProd ( S |` C ) ) C_ ( G DProd S ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) <-> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) C_ ( G DProd S ) ) )  | 
						
						
							| 65 | 
							
								59 60 64
							 | 
							mpbi2and | 
							 |-  ( ph -> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) C_ ( G DProd S ) )  | 
						
						
							| 66 | 
							
								58 65
							 | 
							eqssd | 
							 |-  ( ph -> ( G DProd S ) = ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) )  |