Step |
Hyp |
Ref |
Expression |
1 |
|
dprdss.1 |
|- ( ph -> G dom DProd T ) |
2 |
|
dprdss.2 |
|- ( ph -> dom T = I ) |
3 |
|
dprdss.3 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
4 |
|
dprdss.4 |
|- ( ( ph /\ k e. I ) -> ( S ` k ) C_ ( T ` k ) ) |
5 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
8 |
|
dprdgrp |
|- ( G dom DProd T -> G e. Grp ) |
9 |
1 8
|
syl |
|- ( ph -> G e. Grp ) |
10 |
1 2
|
dprddomcld |
|- ( ph -> I e. _V ) |
11 |
4
|
ralrimiva |
|- ( ph -> A. k e. I ( S ` k ) C_ ( T ` k ) ) |
12 |
|
fveq2 |
|- ( k = x -> ( S ` k ) = ( S ` x ) ) |
13 |
|
fveq2 |
|- ( k = x -> ( T ` k ) = ( T ` x ) ) |
14 |
12 13
|
sseq12d |
|- ( k = x -> ( ( S ` k ) C_ ( T ` k ) <-> ( S ` x ) C_ ( T ` x ) ) ) |
15 |
14
|
rspcv |
|- ( x e. I -> ( A. k e. I ( S ` k ) C_ ( T ` k ) -> ( S ` x ) C_ ( T ` x ) ) ) |
16 |
11 15
|
mpan9 |
|- ( ( ph /\ x e. I ) -> ( S ` x ) C_ ( T ` x ) ) |
17 |
16
|
3ad2antr1 |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( T ` x ) ) |
18 |
1
|
adantr |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> G dom DProd T ) |
19 |
2
|
adantr |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> dom T = I ) |
20 |
|
simpr1 |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> x e. I ) |
21 |
|
simpr2 |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> y e. I ) |
22 |
|
simpr3 |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> x =/= y ) |
23 |
18 19 20 21 22 5
|
dprdcntz |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` x ) C_ ( ( Cntz ` G ) ` ( T ` y ) ) ) |
24 |
1 2
|
dprdf2 |
|- ( ph -> T : I --> ( SubGrp ` G ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> T : I --> ( SubGrp ` G ) ) |
26 |
25 21
|
ffvelrnd |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` y ) e. ( SubGrp ` G ) ) |
27 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
28 |
27
|
subgss |
|- ( ( T ` y ) e. ( SubGrp ` G ) -> ( T ` y ) C_ ( Base ` G ) ) |
29 |
26 28
|
syl |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` y ) C_ ( Base ` G ) ) |
30 |
|
fveq2 |
|- ( k = y -> ( S ` k ) = ( S ` y ) ) |
31 |
|
fveq2 |
|- ( k = y -> ( T ` k ) = ( T ` y ) ) |
32 |
30 31
|
sseq12d |
|- ( k = y -> ( ( S ` k ) C_ ( T ` k ) <-> ( S ` y ) C_ ( T ` y ) ) ) |
33 |
11
|
adantr |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> A. k e. I ( S ` k ) C_ ( T ` k ) ) |
34 |
32 33 21
|
rspcdva |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` y ) C_ ( T ` y ) ) |
35 |
27 5
|
cntz2ss |
|- ( ( ( T ` y ) C_ ( Base ` G ) /\ ( S ` y ) C_ ( T ` y ) ) -> ( ( Cntz ` G ) ` ( T ` y ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
36 |
29 34 35
|
syl2anc |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( T ` y ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
37 |
23 36
|
sstrd |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
38 |
17 37
|
sstrd |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
39 |
9
|
adantr |
|- ( ( ph /\ x e. I ) -> G e. Grp ) |
40 |
27
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
41 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
42 |
39 40 41
|
3syl |
|- ( ( ph /\ x e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
43 |
|
difss |
|- ( I \ { x } ) C_ I |
44 |
11
|
adantr |
|- ( ( ph /\ x e. I ) -> A. k e. I ( S ` k ) C_ ( T ` k ) ) |
45 |
|
ssralv |
|- ( ( I \ { x } ) C_ I -> ( A. k e. I ( S ` k ) C_ ( T ` k ) -> A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) ) ) |
46 |
43 44 45
|
mpsyl |
|- ( ( ph /\ x e. I ) -> A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) ) |
47 |
|
ss2iun |
|- ( A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) -> U_ k e. ( I \ { x } ) ( S ` k ) C_ U_ k e. ( I \ { x } ) ( T ` k ) ) |
48 |
46 47
|
syl |
|- ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( S ` k ) C_ U_ k e. ( I \ { x } ) ( T ` k ) ) |
49 |
3
|
adantr |
|- ( ( ph /\ x e. I ) -> S : I --> ( SubGrp ` G ) ) |
50 |
|
ffun |
|- ( S : I --> ( SubGrp ` G ) -> Fun S ) |
51 |
|
funiunfv |
|- ( Fun S -> U_ k e. ( I \ { x } ) ( S ` k ) = U. ( S " ( I \ { x } ) ) ) |
52 |
49 50 51
|
3syl |
|- ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( S ` k ) = U. ( S " ( I \ { x } ) ) ) |
53 |
24
|
adantr |
|- ( ( ph /\ x e. I ) -> T : I --> ( SubGrp ` G ) ) |
54 |
|
ffun |
|- ( T : I --> ( SubGrp ` G ) -> Fun T ) |
55 |
|
funiunfv |
|- ( Fun T -> U_ k e. ( I \ { x } ) ( T ` k ) = U. ( T " ( I \ { x } ) ) ) |
56 |
53 54 55
|
3syl |
|- ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( T ` k ) = U. ( T " ( I \ { x } ) ) ) |
57 |
48 52 56
|
3sstr3d |
|- ( ( ph /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ U. ( T " ( I \ { x } ) ) ) |
58 |
|
imassrn |
|- ( T " ( I \ { x } ) ) C_ ran T |
59 |
53
|
frnd |
|- ( ( ph /\ x e. I ) -> ran T C_ ( SubGrp ` G ) ) |
60 |
|
mresspw |
|- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
61 |
42 60
|
syl |
|- ( ( ph /\ x e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
62 |
59 61
|
sstrd |
|- ( ( ph /\ x e. I ) -> ran T C_ ~P ( Base ` G ) ) |
63 |
58 62
|
sstrid |
|- ( ( ph /\ x e. I ) -> ( T " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) |
64 |
|
sspwuni |
|- ( ( T " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( T " ( I \ { x } ) ) C_ ( Base ` G ) ) |
65 |
63 64
|
sylib |
|- ( ( ph /\ x e. I ) -> U. ( T " ( I \ { x } ) ) C_ ( Base ` G ) ) |
66 |
42 7 57 65
|
mrcssd |
|- ( ( ph /\ x e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) |
67 |
|
ss2in |
|- ( ( ( S ` x ) C_ ( T ` x ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) ) |
68 |
16 66 67
|
syl2anc |
|- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) ) |
69 |
1
|
adantr |
|- ( ( ph /\ x e. I ) -> G dom DProd T ) |
70 |
2
|
adantr |
|- ( ( ph /\ x e. I ) -> dom T = I ) |
71 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
72 |
69 70 71 6 7
|
dprddisj |
|- ( ( ph /\ x e. I ) -> ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
73 |
68 72
|
sseqtrd |
|- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
74 |
5 6 7 9 10 3 38 73
|
dmdprdd |
|- ( ph -> G dom DProd S ) |
75 |
1
|
a1d |
|- ( ph -> ( G dom DProd S -> G dom DProd T ) ) |
76 |
|
ss2ixp |
|- ( A. k e. I ( S ` k ) C_ ( T ` k ) -> X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) ) |
77 |
11 76
|
syl |
|- ( ph -> X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) ) |
78 |
|
rabss2 |
|- ( X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) -> { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } C_ { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } ) |
79 |
|
ssrexv |
|- ( { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } C_ { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } -> ( E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) -> E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) |
80 |
77 78 79
|
3syl |
|- ( ph -> ( E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) -> E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) |
81 |
75 80
|
anim12d |
|- ( ph -> ( ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) -> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
82 |
|
fdm |
|- ( S : I --> ( SubGrp ` G ) -> dom S = I ) |
83 |
|
eqid |
|- { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } = { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } |
84 |
6 83
|
eldprd |
|- ( dom S = I -> ( a e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
85 |
3 82 84
|
3syl |
|- ( ph -> ( a e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
86 |
|
eqid |
|- { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } = { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } |
87 |
6 86
|
eldprd |
|- ( dom T = I -> ( a e. ( G DProd T ) <-> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
88 |
2 87
|
syl |
|- ( ph -> ( a e. ( G DProd T ) <-> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
89 |
81 85 88
|
3imtr4d |
|- ( ph -> ( a e. ( G DProd S ) -> a e. ( G DProd T ) ) ) |
90 |
89
|
ssrdv |
|- ( ph -> ( G DProd S ) C_ ( G DProd T ) ) |
91 |
74 90
|
jca |
|- ( ph -> ( G dom DProd S /\ ( G DProd S ) C_ ( G DProd T ) ) ) |