| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdss.1 | 
							 |-  ( ph -> G dom DProd T )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdss.2 | 
							 |-  ( ph -> dom T = I )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdss.3 | 
							 |-  ( ph -> S : I --> ( SubGrp ` G ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dprdss.4 | 
							 |-  ( ( ph /\ k e. I ) -> ( S ` k ) C_ ( T ` k ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Cntz ` G ) = ( Cntz ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` G ) = ( 0g ` G )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) )  | 
						
						
							| 8 | 
							
								
							 | 
							dprdgrp | 
							 |-  ( G dom DProd T -> G e. Grp )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							dprddomcld | 
							 |-  ( ph -> I e. _V )  | 
						
						
							| 11 | 
							
								4
							 | 
							ralrimiva | 
							 |-  ( ph -> A. k e. I ( S ` k ) C_ ( T ` k ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = x -> ( S ` k ) = ( S ` x ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = x -> ( T ` k ) = ( T ` x ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sseq12d | 
							 |-  ( k = x -> ( ( S ` k ) C_ ( T ` k ) <-> ( S ` x ) C_ ( T ` x ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rspcv | 
							 |-  ( x e. I -> ( A. k e. I ( S ` k ) C_ ( T ` k ) -> ( S ` x ) C_ ( T ` x ) ) )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							mpan9 | 
							 |-  ( ( ph /\ x e. I ) -> ( S ` x ) C_ ( T ` x ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							3ad2antr1 | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( T ` x ) )  | 
						
						
							| 18 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> G dom DProd T )  | 
						
						
							| 19 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> dom T = I )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> x e. I )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> y e. I )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> x =/= y )  | 
						
						
							| 23 | 
							
								18 19 20 21 22 5
							 | 
							dprdcntz | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` x ) C_ ( ( Cntz ` G ) ` ( T ` y ) ) )  | 
						
						
							| 24 | 
							
								1 2
							 | 
							dprdf2 | 
							 |-  ( ph -> T : I --> ( SubGrp ` G ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> T : I --> ( SubGrp ` G ) )  | 
						
						
							| 26 | 
							
								25 21
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` y ) e. ( SubGrp ` G ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 28 | 
							
								27
							 | 
							subgss | 
							 |-  ( ( T ` y ) e. ( SubGrp ` G ) -> ( T ` y ) C_ ( Base ` G ) )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							syl | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` y ) C_ ( Base ` G ) )  | 
						
						
							| 30 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = y -> ( S ` k ) = ( S ` y ) )  | 
						
						
							| 31 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = y -> ( T ` k ) = ( T ` y ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sseq12d | 
							 |-  ( k = y -> ( ( S ` k ) C_ ( T ` k ) <-> ( S ` y ) C_ ( T ` y ) ) )  | 
						
						
							| 33 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> A. k e. I ( S ` k ) C_ ( T ` k ) )  | 
						
						
							| 34 | 
							
								32 33 21
							 | 
							rspcdva | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` y ) C_ ( T ` y ) )  | 
						
						
							| 35 | 
							
								27 5
							 | 
							cntz2ss | 
							 |-  ( ( ( T ` y ) C_ ( Base ` G ) /\ ( S ` y ) C_ ( T ` y ) ) -> ( ( Cntz ` G ) ` ( T ` y ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) )  | 
						
						
							| 36 | 
							
								29 34 35
							 | 
							syl2anc | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( T ` y ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) )  | 
						
						
							| 37 | 
							
								23 36
							 | 
							sstrd | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) )  | 
						
						
							| 38 | 
							
								17 37
							 | 
							sstrd | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) )  | 
						
						
							| 39 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. I ) -> G e. Grp )  | 
						
						
							| 40 | 
							
								27
							 | 
							subgacs | 
							 |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							acsmre | 
							 |-  ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) )  | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							3syl | 
							 |-  ( ( ph /\ x e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							difss | 
							 |-  ( I \ { x } ) C_ I | 
						
						
							| 44 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. I ) -> A. k e. I ( S ` k ) C_ ( T ` k ) )  | 
						
						
							| 45 | 
							
								
							 | 
							ssralv | 
							 |-  ( ( I \ { x } ) C_ I -> ( A. k e. I ( S ` k ) C_ ( T ` k ) -> A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) ) ) | 
						
						
							| 46 | 
							
								43 44 45
							 | 
							mpsyl | 
							 |-  ( ( ph /\ x e. I ) -> A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) ) | 
						
						
							| 47 | 
							
								
							 | 
							ss2iun | 
							 |-  ( A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) -> U_ k e. ( I \ { x } ) ( S ` k ) C_ U_ k e. ( I \ { x } ) ( T ` k ) ) | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							 |-  ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( S ` k ) C_ U_ k e. ( I \ { x } ) ( T ` k ) ) | 
						
						
							| 49 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. I ) -> S : I --> ( SubGrp ` G ) )  | 
						
						
							| 50 | 
							
								
							 | 
							ffun | 
							 |-  ( S : I --> ( SubGrp ` G ) -> Fun S )  | 
						
						
							| 51 | 
							
								
							 | 
							funiunfv | 
							 |-  ( Fun S -> U_ k e. ( I \ { x } ) ( S ` k ) = U. ( S " ( I \ { x } ) ) ) | 
						
						
							| 52 | 
							
								49 50 51
							 | 
							3syl | 
							 |-  ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( S ` k ) = U. ( S " ( I \ { x } ) ) ) | 
						
						
							| 53 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. I ) -> T : I --> ( SubGrp ` G ) )  | 
						
						
							| 54 | 
							
								
							 | 
							ffun | 
							 |-  ( T : I --> ( SubGrp ` G ) -> Fun T )  | 
						
						
							| 55 | 
							
								
							 | 
							funiunfv | 
							 |-  ( Fun T -> U_ k e. ( I \ { x } ) ( T ` k ) = U. ( T " ( I \ { x } ) ) ) | 
						
						
							| 56 | 
							
								53 54 55
							 | 
							3syl | 
							 |-  ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( T ` k ) = U. ( T " ( I \ { x } ) ) ) | 
						
						
							| 57 | 
							
								48 52 56
							 | 
							3sstr3d | 
							 |-  ( ( ph /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ U. ( T " ( I \ { x } ) ) ) | 
						
						
							| 58 | 
							
								
							 | 
							imassrn | 
							 |-  ( T " ( I \ { x } ) ) C_ ran T | 
						
						
							| 59 | 
							
								53
							 | 
							frnd | 
							 |-  ( ( ph /\ x e. I ) -> ran T C_ ( SubGrp ` G ) )  | 
						
						
							| 60 | 
							
								
							 | 
							mresspw | 
							 |-  ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) )  | 
						
						
							| 61 | 
							
								42 60
							 | 
							syl | 
							 |-  ( ( ph /\ x e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							sstrd | 
							 |-  ( ( ph /\ x e. I ) -> ran T C_ ~P ( Base ` G ) )  | 
						
						
							| 63 | 
							
								58 62
							 | 
							sstrid | 
							 |-  ( ( ph /\ x e. I ) -> ( T " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) | 
						
						
							| 64 | 
							
								
							 | 
							sspwuni | 
							 |-  ( ( T " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( T " ( I \ { x } ) ) C_ ( Base ` G ) ) | 
						
						
							| 65 | 
							
								63 64
							 | 
							sylib | 
							 |-  ( ( ph /\ x e. I ) -> U. ( T " ( I \ { x } ) ) C_ ( Base ` G ) ) | 
						
						
							| 66 | 
							
								42 7 57 65
							 | 
							mrcssd | 
							 |-  ( ( ph /\ x e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) | 
						
						
							| 67 | 
							
								
							 | 
							ss2in | 
							 |-  ( ( ( S ` x ) C_ ( T ` x ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) ) | 
						
						
							| 68 | 
							
								16 66 67
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) ) | 
						
						
							| 69 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. I ) -> G dom DProd T )  | 
						
						
							| 70 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. I ) -> dom T = I )  | 
						
						
							| 71 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. I ) -> x e. I )  | 
						
						
							| 72 | 
							
								69 70 71 6 7
							 | 
							dprddisj | 
							 |-  ( ( ph /\ x e. I ) -> ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) | 
						
						
							| 73 | 
							
								68 72
							 | 
							sseqtrd | 
							 |-  ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) | 
						
						
							| 74 | 
							
								5 6 7 9 10 3 38 73
							 | 
							dmdprdd | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 75 | 
							
								1
							 | 
							a1d | 
							 |-  ( ph -> ( G dom DProd S -> G dom DProd T ) )  | 
						
						
							| 76 | 
							
								
							 | 
							ss2ixp | 
							 |-  ( A. k e. I ( S ` k ) C_ ( T ` k ) -> X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) )  | 
						
						
							| 77 | 
							
								11 76
							 | 
							syl | 
							 |-  ( ph -> X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) )  | 
						
						
							| 78 | 
							
								
							 | 
							rabss2 | 
							 |-  ( X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) -> { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } C_ { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } ) | 
						
						
							| 79 | 
							
								
							 | 
							ssrexv | 
							 |-  ( { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } C_ { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } -> ( E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) -> E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) | 
						
						
							| 80 | 
							
								77 78 79
							 | 
							3syl | 
							 |-  ( ph -> ( E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) -> E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) | 
						
						
							| 81 | 
							
								75 80
							 | 
							anim12d | 
							 |-  ( ph -> ( ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) -> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) | 
						
						
							| 82 | 
							
								
							 | 
							fdm | 
							 |-  ( S : I --> ( SubGrp ` G ) -> dom S = I )  | 
						
						
							| 83 | 
							
								
							 | 
							eqid | 
							 |-  { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } = { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } | 
						
						
							| 84 | 
							
								6 83
							 | 
							eldprd | 
							 |-  ( dom S = I -> ( a e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) | 
						
						
							| 85 | 
							
								3 82 84
							 | 
							3syl | 
							 |-  ( ph -> ( a e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) | 
						
						
							| 86 | 
							
								
							 | 
							eqid | 
							 |-  { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } = { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } | 
						
						
							| 87 | 
							
								6 86
							 | 
							eldprd | 
							 |-  ( dom T = I -> ( a e. ( G DProd T ) <-> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) | 
						
						
							| 88 | 
							
								2 87
							 | 
							syl | 
							 |-  ( ph -> ( a e. ( G DProd T ) <-> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) | 
						
						
							| 89 | 
							
								81 85 88
							 | 
							3imtr4d | 
							 |-  ( ph -> ( a e. ( G DProd S ) -> a e. ( G DProd T ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							ssrdv | 
							 |-  ( ph -> ( G DProd S ) C_ ( G DProd T ) )  | 
						
						
							| 91 | 
							
								74 90
							 | 
							jca | 
							 |-  ( ph -> ( G dom DProd S /\ ( G DProd S ) C_ ( G DProd T ) ) )  |