| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdssv.b |
|- B = ( Base ` G ) |
| 2 |
|
eqid |
|- dom S = dom S |
| 3 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 4 |
|
eqid |
|- { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } = { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } |
| 5 |
3 4
|
eldprd |
|- ( dom S = dom S -> ( x e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } x = ( G gsum f ) ) ) ) |
| 6 |
2 5
|
ax-mp |
|- ( x e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } x = ( G gsum f ) ) ) |
| 7 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
| 8 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
| 9 |
8
|
grpmndd |
|- ( G dom DProd S -> G e. Mnd ) |
| 10 |
9
|
adantr |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> G e. Mnd ) |
| 11 |
|
reldmdprd |
|- Rel dom DProd |
| 12 |
11
|
brrelex2i |
|- ( G dom DProd S -> S e. _V ) |
| 13 |
12
|
dmexd |
|- ( G dom DProd S -> dom S e. _V ) |
| 14 |
13
|
adantr |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> dom S e. _V ) |
| 15 |
|
simpl |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> G dom DProd S ) |
| 16 |
|
eqidd |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> dom S = dom S ) |
| 17 |
|
simpr |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) |
| 18 |
4 15 16 17 1
|
dprdff |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f : dom S --> B ) |
| 19 |
4 15 16 17 7
|
dprdfcntz |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> ran f C_ ( ( Cntz ` G ) ` ran f ) ) |
| 20 |
4 15 16 17
|
dprdffsupp |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f finSupp ( 0g ` G ) ) |
| 21 |
1 3 7 10 14 18 19 20
|
gsumzcl |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> ( G gsum f ) e. B ) |
| 22 |
|
eleq1 |
|- ( x = ( G gsum f ) -> ( x e. B <-> ( G gsum f ) e. B ) ) |
| 23 |
21 22
|
syl5ibrcom |
|- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> ( x = ( G gsum f ) -> x e. B ) ) |
| 24 |
23
|
rexlimdva |
|- ( G dom DProd S -> ( E. f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } x = ( G gsum f ) -> x e. B ) ) |
| 25 |
24
|
imp |
|- ( ( G dom DProd S /\ E. f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } x = ( G gsum f ) ) -> x e. B ) |
| 26 |
6 25
|
sylbi |
|- ( x e. ( G DProd S ) -> x e. B ) |
| 27 |
26
|
ssriv |
|- ( G DProd S ) C_ B |