Step |
Hyp |
Ref |
Expression |
1 |
|
dprdub.1 |
|- ( ph -> G dom DProd S ) |
2 |
|
dprdub.2 |
|- ( ph -> dom S = I ) |
3 |
|
dprdub.3 |
|- ( ph -> X e. I ) |
4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
5 |
|
eqid |
|- { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } = { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } |
6 |
1
|
adantr |
|- ( ( ph /\ x e. ( S ` X ) ) -> G dom DProd S ) |
7 |
2
|
adantr |
|- ( ( ph /\ x e. ( S ` X ) ) -> dom S = I ) |
8 |
3
|
adantr |
|- ( ( ph /\ x e. ( S ` X ) ) -> X e. I ) |
9 |
|
simpr |
|- ( ( ph /\ x e. ( S ` X ) ) -> x e. ( S ` X ) ) |
10 |
|
eqid |
|- ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) = ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) |
11 |
4 5 6 7 8 9 10
|
dprdfid |
|- ( ( ph /\ x e. ( S ` X ) ) -> ( ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } /\ ( G gsum ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) ) = x ) ) |
12 |
11
|
simprd |
|- ( ( ph /\ x e. ( S ` X ) ) -> ( G gsum ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) ) = x ) |
13 |
11
|
simpld |
|- ( ( ph /\ x e. ( S ` X ) ) -> ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) |
14 |
4 5 6 7 13
|
eldprdi |
|- ( ( ph /\ x e. ( S ` X ) ) -> ( G gsum ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) ) e. ( G DProd S ) ) |
15 |
12 14
|
eqeltrrd |
|- ( ( ph /\ x e. ( S ` X ) ) -> x e. ( G DProd S ) ) |
16 |
15
|
ex |
|- ( ph -> ( x e. ( S ` X ) -> x e. ( G DProd S ) ) ) |
17 |
16
|
ssrdv |
|- ( ph -> ( S ` X ) C_ ( G DProd S ) ) |