| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdff.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
| 2 |
|
dprdff.1 |
|- ( ph -> G dom DProd S ) |
| 3 |
|
dprdff.2 |
|- ( ph -> dom S = I ) |
| 4 |
|
elex |
|- ( F e. X_ i e. I ( S ` i ) -> F e. _V ) |
| 5 |
4
|
a1i |
|- ( ph -> ( F e. X_ i e. I ( S ` i ) -> F e. _V ) ) |
| 6 |
2 3
|
dprddomcld |
|- ( ph -> I e. _V ) |
| 7 |
|
fnex |
|- ( ( F Fn I /\ I e. _V ) -> F e. _V ) |
| 8 |
7
|
expcom |
|- ( I e. _V -> ( F Fn I -> F e. _V ) ) |
| 9 |
6 8
|
syl |
|- ( ph -> ( F Fn I -> F e. _V ) ) |
| 10 |
9
|
adantrd |
|- ( ph -> ( ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) -> F e. _V ) ) |
| 11 |
|
fveq2 |
|- ( i = x -> ( S ` i ) = ( S ` x ) ) |
| 12 |
11
|
cbvixpv |
|- X_ i e. I ( S ` i ) = X_ x e. I ( S ` x ) |
| 13 |
12
|
eleq2i |
|- ( F e. X_ i e. I ( S ` i ) <-> F e. X_ x e. I ( S ` x ) ) |
| 14 |
|
elixp2 |
|- ( F e. X_ x e. I ( S ` x ) <-> ( F e. _V /\ F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) |
| 15 |
|
3anass |
|- ( ( F e. _V /\ F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) <-> ( F e. _V /\ ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) |
| 16 |
13 14 15
|
3bitri |
|- ( F e. X_ i e. I ( S ` i ) <-> ( F e. _V /\ ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) |
| 17 |
16
|
baib |
|- ( F e. _V -> ( F e. X_ i e. I ( S ` i ) <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) |
| 18 |
17
|
a1i |
|- ( ph -> ( F e. _V -> ( F e. X_ i e. I ( S ` i ) <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) ) |
| 19 |
5 10 18
|
pm5.21ndd |
|- ( ph -> ( F e. X_ i e. I ( S ` i ) <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) |
| 20 |
19
|
anbi1d |
|- ( ph -> ( ( F e. X_ i e. I ( S ` i ) /\ F finSupp .0. ) <-> ( ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) /\ F finSupp .0. ) ) ) |
| 21 |
|
breq1 |
|- ( h = F -> ( h finSupp .0. <-> F finSupp .0. ) ) |
| 22 |
21 1
|
elrab2 |
|- ( F e. W <-> ( F e. X_ i e. I ( S ` i ) /\ F finSupp .0. ) ) |
| 23 |
|
df-3an |
|- ( ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) <-> ( ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) /\ F finSupp .0. ) ) |
| 24 |
20 22 23
|
3bitr4g |
|- ( ph -> ( F e. W <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) ) ) |