| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-dp2 |
|- _ x y = ( x + ( y / ; 1 0 ) ) |
| 2 |
|
oveq1 |
|- ( x = A -> ( x + ( y / ; 1 0 ) ) = ( A + ( y / ; 1 0 ) ) ) |
| 3 |
1 2
|
eqtrid |
|- ( x = A -> _ x y = ( A + ( y / ; 1 0 ) ) ) |
| 4 |
|
oveq1 |
|- ( y = B -> ( y / ; 1 0 ) = ( B / ; 1 0 ) ) |
| 5 |
4
|
oveq2d |
|- ( y = B -> ( A + ( y / ; 1 0 ) ) = ( A + ( B / ; 1 0 ) ) ) |
| 6 |
|
df-dp2 |
|- _ A B = ( A + ( B / ; 1 0 ) ) |
| 7 |
5 6
|
eqtr4di |
|- ( y = B -> ( A + ( y / ; 1 0 ) ) = _ A B ) |
| 8 |
|
df-dp |
|- . = ( x e. NN0 , y e. RR |-> _ x y ) |
| 9 |
6
|
ovexi |
|- _ A B e. _V |
| 10 |
3 7 8 9
|
ovmpo |
|- ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) = _ A B ) |