Step |
Hyp |
Ref |
Expression |
1 |
|
df-dp2 |
|- _ x y = ( x + ( y / ; 1 0 ) ) |
2 |
|
oveq1 |
|- ( x = A -> ( x + ( y / ; 1 0 ) ) = ( A + ( y / ; 1 0 ) ) ) |
3 |
1 2
|
syl5eq |
|- ( x = A -> _ x y = ( A + ( y / ; 1 0 ) ) ) |
4 |
|
oveq1 |
|- ( y = B -> ( y / ; 1 0 ) = ( B / ; 1 0 ) ) |
5 |
4
|
oveq2d |
|- ( y = B -> ( A + ( y / ; 1 0 ) ) = ( A + ( B / ; 1 0 ) ) ) |
6 |
|
df-dp2 |
|- _ A B = ( A + ( B / ; 1 0 ) ) |
7 |
5 6
|
eqtr4di |
|- ( y = B -> ( A + ( y / ; 1 0 ) ) = _ A B ) |
8 |
|
df-dp |
|- . = ( x e. NN0 , y e. RR |-> _ x y ) |
9 |
6
|
ovexi |
|- _ A B e. _V |
10 |
3 7 8 9
|
ovmpo |
|- ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) = _ A B ) |