Metamath Proof Explorer


Theorem dpval3rp

Description: Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpval3rp.a
|- A e. NN0
dpval3rp.b
|- B e. RR+
Assertion dpval3rp
|- ( A . B ) = _ A B

Proof

Step Hyp Ref Expression
1 dpval3rp.a
 |-  A e. NN0
2 dpval3rp.b
 |-  B e. RR+
3 rpre
 |-  ( B e. RR+ -> B e. RR )
4 2 3 ax-mp
 |-  B e. RR
5 1 4 dpval3
 |-  ( A . B ) = _ A B