Metamath Proof Explorer


Theorem dquart

Description: Solve a depressed quartic equation. To eliminate S , which is the square root of a solution M to the resolvent cubic equation, apply cubic or one of its variants. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses dquart.b
|- ( ph -> B e. CC )
dquart.c
|- ( ph -> C e. CC )
dquart.x
|- ( ph -> X e. CC )
dquart.s
|- ( ph -> S e. CC )
dquart.m
|- ( ph -> M = ( ( 2 x. S ) ^ 2 ) )
dquart.m0
|- ( ph -> M =/= 0 )
dquart.i
|- ( ph -> I e. CC )
dquart.i2
|- ( ph -> ( I ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / S ) ) )
dquart.d
|- ( ph -> D e. CC )
dquart.3
|- ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) + -u ( C ^ 2 ) ) ) = 0 )
dquart.j
|- ( ph -> J e. CC )
dquart.j2
|- ( ph -> ( J ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) - ( ( C / 4 ) / S ) ) )
Assertion dquart
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> ( ( X = ( -u S + I ) \/ X = ( -u S - I ) ) \/ ( X = ( S + J ) \/ X = ( S - J ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dquart.b
 |-  ( ph -> B e. CC )
2 dquart.c
 |-  ( ph -> C e. CC )
3 dquart.x
 |-  ( ph -> X e. CC )
4 dquart.s
 |-  ( ph -> S e. CC )
5 dquart.m
 |-  ( ph -> M = ( ( 2 x. S ) ^ 2 ) )
6 dquart.m0
 |-  ( ph -> M =/= 0 )
7 dquart.i
 |-  ( ph -> I e. CC )
8 dquart.i2
 |-  ( ph -> ( I ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / S ) ) )
9 dquart.d
 |-  ( ph -> D e. CC )
10 dquart.3
 |-  ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) + -u ( C ^ 2 ) ) ) = 0 )
11 dquart.j
 |-  ( ph -> J e. CC )
12 dquart.j2
 |-  ( ph -> ( J ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) - ( ( C / 4 ) / S ) ) )
13 3 sqcld
 |-  ( ph -> ( X ^ 2 ) e. CC )
14 2cn
 |-  2 e. CC
15 mulcl
 |-  ( ( 2 e. CC /\ S e. CC ) -> ( 2 x. S ) e. CC )
16 14 4 15 sylancr
 |-  ( ph -> ( 2 x. S ) e. CC )
17 16 sqcld
 |-  ( ph -> ( ( 2 x. S ) ^ 2 ) e. CC )
18 5 17 eqeltrd
 |-  ( ph -> M e. CC )
19 18 1 addcld
 |-  ( ph -> ( M + B ) e. CC )
20 19 halfcld
 |-  ( ph -> ( ( M + B ) / 2 ) e. CC )
21 binom2
 |-  ( ( ( X ^ 2 ) e. CC /\ ( ( M + B ) / 2 ) e. CC ) -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) )
22 13 20 21 syl2anc
 |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) )
23 2nn0
 |-  2 e. NN0
24 23 a1i
 |-  ( ph -> 2 e. NN0 )
25 3 24 24 expmuld
 |-  ( ph -> ( X ^ ( 2 x. 2 ) ) = ( ( X ^ 2 ) ^ 2 ) )
26 2t2e4
 |-  ( 2 x. 2 ) = 4
27 26 oveq2i
 |-  ( X ^ ( 2 x. 2 ) ) = ( X ^ 4 )
28 25 27 eqtr3di
 |-  ( ph -> ( ( X ^ 2 ) ^ 2 ) = ( X ^ 4 ) )
29 14 a1i
 |-  ( ph -> 2 e. CC )
30 29 13 20 mul12d
 |-  ( ph -> ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) = ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) )
31 2ne0
 |-  2 =/= 0
32 31 a1i
 |-  ( ph -> 2 =/= 0 )
33 19 29 32 divcan2d
 |-  ( ph -> ( 2 x. ( ( M + B ) / 2 ) ) = ( M + B ) )
34 33 oveq2d
 |-  ( ph -> ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) = ( ( X ^ 2 ) x. ( M + B ) ) )
35 13 19 mulcomd
 |-  ( ph -> ( ( X ^ 2 ) x. ( M + B ) ) = ( ( M + B ) x. ( X ^ 2 ) ) )
36 34 35 eqtrd
 |-  ( ph -> ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) = ( ( M + B ) x. ( X ^ 2 ) ) )
37 18 1 13 adddird
 |-  ( ph -> ( ( M + B ) x. ( X ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) )
38 30 36 37 3eqtrd
 |-  ( ph -> ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) )
39 28 38 oveq12d
 |-  ( ph -> ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) = ( ( X ^ 4 ) + ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) )
40 4nn0
 |-  4 e. NN0
41 expcl
 |-  ( ( X e. CC /\ 4 e. NN0 ) -> ( X ^ 4 ) e. CC )
42 3 40 41 sylancl
 |-  ( ph -> ( X ^ 4 ) e. CC )
43 18 13 mulcld
 |-  ( ph -> ( M x. ( X ^ 2 ) ) e. CC )
44 1 13 mulcld
 |-  ( ph -> ( B x. ( X ^ 2 ) ) e. CC )
45 42 43 44 add12d
 |-  ( ph -> ( ( X ^ 4 ) + ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) )
46 39 45 eqtrd
 |-  ( ph -> ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) )
47 46 oveq1d
 |-  ( ph -> ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) = ( ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) )
48 42 44 addcld
 |-  ( ph -> ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) e. CC )
49 20 sqcld
 |-  ( ph -> ( ( ( M + B ) / 2 ) ^ 2 ) e. CC )
50 43 48 49 addassd
 |-  ( ph -> ( ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) )
51 22 47 50 3eqtrd
 |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) )
52 18 halfcld
 |-  ( ph -> ( M / 2 ) e. CC )
53 52 3 mulcld
 |-  ( ph -> ( ( M / 2 ) x. X ) e. CC )
54 4cn
 |-  4 e. CC
55 54 a1i
 |-  ( ph -> 4 e. CC )
56 4ne0
 |-  4 =/= 0
57 56 a1i
 |-  ( ph -> 4 =/= 0 )
58 2 55 57 divcld
 |-  ( ph -> ( C / 4 ) e. CC )
59 53 58 subcld
 |-  ( ph -> ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) e. CC )
60 5 6 eqnetrrd
 |-  ( ph -> ( ( 2 x. S ) ^ 2 ) =/= 0 )
61 sqne0
 |-  ( ( 2 x. S ) e. CC -> ( ( ( 2 x. S ) ^ 2 ) =/= 0 <-> ( 2 x. S ) =/= 0 ) )
62 16 61 syl
 |-  ( ph -> ( ( ( 2 x. S ) ^ 2 ) =/= 0 <-> ( 2 x. S ) =/= 0 ) )
63 60 62 mpbid
 |-  ( ph -> ( 2 x. S ) =/= 0 )
64 mulne0b
 |-  ( ( 2 e. CC /\ S e. CC ) -> ( ( 2 =/= 0 /\ S =/= 0 ) <-> ( 2 x. S ) =/= 0 ) )
65 14 4 64 sylancr
 |-  ( ph -> ( ( 2 =/= 0 /\ S =/= 0 ) <-> ( 2 x. S ) =/= 0 ) )
66 63 65 mpbird
 |-  ( ph -> ( 2 =/= 0 /\ S =/= 0 ) )
67 66 simprd
 |-  ( ph -> S =/= 0 )
68 59 4 29 67 32 divcan5d
 |-  ( ph -> ( ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) / ( 2 x. S ) ) = ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) )
69 29 53 58 subdid
 |-  ( ph -> ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) = ( ( 2 x. ( ( M / 2 ) x. X ) ) - ( 2 x. ( C / 4 ) ) ) )
70 29 52 3 mulassd
 |-  ( ph -> ( ( 2 x. ( M / 2 ) ) x. X ) = ( 2 x. ( ( M / 2 ) x. X ) ) )
71 18 29 32 divcan2d
 |-  ( ph -> ( 2 x. ( M / 2 ) ) = M )
72 71 oveq1d
 |-  ( ph -> ( ( 2 x. ( M / 2 ) ) x. X ) = ( M x. X ) )
73 70 72 eqtr3d
 |-  ( ph -> ( 2 x. ( ( M / 2 ) x. X ) ) = ( M x. X ) )
74 29 2 55 57 divassd
 |-  ( ph -> ( ( 2 x. C ) / 4 ) = ( 2 x. ( C / 4 ) ) )
75 26 oveq2i
 |-  ( ( 2 x. C ) / ( 2 x. 2 ) ) = ( ( 2 x. C ) / 4 )
76 2 29 29 32 32 divcan5d
 |-  ( ph -> ( ( 2 x. C ) / ( 2 x. 2 ) ) = ( C / 2 ) )
77 75 76 eqtr3id
 |-  ( ph -> ( ( 2 x. C ) / 4 ) = ( C / 2 ) )
78 74 77 eqtr3d
 |-  ( ph -> ( 2 x. ( C / 4 ) ) = ( C / 2 ) )
79 73 78 oveq12d
 |-  ( ph -> ( ( 2 x. ( ( M / 2 ) x. X ) ) - ( 2 x. ( C / 4 ) ) ) = ( ( M x. X ) - ( C / 2 ) ) )
80 69 79 eqtrd
 |-  ( ph -> ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) = ( ( M x. X ) - ( C / 2 ) ) )
81 80 oveq1d
 |-  ( ph -> ( ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) / ( 2 x. S ) ) = ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) )
82 68 81 eqtr3d
 |-  ( ph -> ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) = ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) )
83 82 oveq1d
 |-  ( ph -> ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) = ( ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ^ 2 ) )
84 18 3 mulcld
 |-  ( ph -> ( M x. X ) e. CC )
85 2 halfcld
 |-  ( ph -> ( C / 2 ) e. CC )
86 84 85 subcld
 |-  ( ph -> ( ( M x. X ) - ( C / 2 ) ) e. CC )
87 86 16 63 sqdivd
 |-  ( ph -> ( ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ^ 2 ) = ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) )
88 18 sqcld
 |-  ( ph -> ( M ^ 2 ) e. CC )
89 88 13 mulcld
 |-  ( ph -> ( ( M ^ 2 ) x. ( X ^ 2 ) ) e. CC )
90 84 2 mulcld
 |-  ( ph -> ( ( M x. X ) x. C ) e. CC )
91 89 90 subcld
 |-  ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) e. CC )
92 2 sqcld
 |-  ( ph -> ( C ^ 2 ) e. CC )
93 92 55 57 divcld
 |-  ( ph -> ( ( C ^ 2 ) / 4 ) e. CC )
94 91 93 18 6 divdird
 |-  ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) / M ) = ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) )
95 binom2sub
 |-  ( ( ( M x. X ) e. CC /\ ( C / 2 ) e. CC ) -> ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) = ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) )
96 84 85 95 syl2anc
 |-  ( ph -> ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) = ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) )
97 18 3 sqmuld
 |-  ( ph -> ( ( M x. X ) ^ 2 ) = ( ( M ^ 2 ) x. ( X ^ 2 ) ) )
98 29 84 85 mul12d
 |-  ( ph -> ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) = ( ( M x. X ) x. ( 2 x. ( C / 2 ) ) ) )
99 2 29 32 divcan2d
 |-  ( ph -> ( 2 x. ( C / 2 ) ) = C )
100 99 oveq2d
 |-  ( ph -> ( ( M x. X ) x. ( 2 x. ( C / 2 ) ) ) = ( ( M x. X ) x. C ) )
101 98 100 eqtrd
 |-  ( ph -> ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) = ( ( M x. X ) x. C ) )
102 97 101 oveq12d
 |-  ( ph -> ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) = ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) )
103 2 29 32 sqdivd
 |-  ( ph -> ( ( C / 2 ) ^ 2 ) = ( ( C ^ 2 ) / ( 2 ^ 2 ) ) )
104 sq2
 |-  ( 2 ^ 2 ) = 4
105 104 oveq2i
 |-  ( ( C ^ 2 ) / ( 2 ^ 2 ) ) = ( ( C ^ 2 ) / 4 )
106 103 105 eqtrdi
 |-  ( ph -> ( ( C / 2 ) ^ 2 ) = ( ( C ^ 2 ) / 4 ) )
107 102 106 oveq12d
 |-  ( ph -> ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) = ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) )
108 96 107 eqtr2d
 |-  ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) = ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) )
109 108 5 oveq12d
 |-  ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) / M ) = ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) )
110 89 90 18 6 divsubdird
 |-  ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) = ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) - ( ( ( M x. X ) x. C ) / M ) ) )
111 88 13 18 6 div23d
 |-  ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) = ( ( ( M ^ 2 ) / M ) x. ( X ^ 2 ) ) )
112 18 sqvald
 |-  ( ph -> ( M ^ 2 ) = ( M x. M ) )
113 112 oveq1d
 |-  ( ph -> ( ( M ^ 2 ) / M ) = ( ( M x. M ) / M ) )
114 18 18 6 divcan3d
 |-  ( ph -> ( ( M x. M ) / M ) = M )
115 113 114 eqtrd
 |-  ( ph -> ( ( M ^ 2 ) / M ) = M )
116 115 oveq1d
 |-  ( ph -> ( ( ( M ^ 2 ) / M ) x. ( X ^ 2 ) ) = ( M x. ( X ^ 2 ) ) )
117 111 116 eqtrd
 |-  ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) = ( M x. ( X ^ 2 ) ) )
118 18 3 2 mul32d
 |-  ( ph -> ( ( M x. X ) x. C ) = ( ( M x. C ) x. X ) )
119 18 2 3 mulassd
 |-  ( ph -> ( ( M x. C ) x. X ) = ( M x. ( C x. X ) ) )
120 118 119 eqtrd
 |-  ( ph -> ( ( M x. X ) x. C ) = ( M x. ( C x. X ) ) )
121 120 oveq1d
 |-  ( ph -> ( ( ( M x. X ) x. C ) / M ) = ( ( M x. ( C x. X ) ) / M ) )
122 2 3 mulcld
 |-  ( ph -> ( C x. X ) e. CC )
123 122 18 6 divcan3d
 |-  ( ph -> ( ( M x. ( C x. X ) ) / M ) = ( C x. X ) )
124 121 123 eqtrd
 |-  ( ph -> ( ( ( M x. X ) x. C ) / M ) = ( C x. X ) )
125 117 124 oveq12d
 |-  ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) - ( ( ( M x. X ) x. C ) / M ) ) = ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) )
126 110 125 eqtrd
 |-  ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) = ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) )
127 126 oveq1d
 |-  ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) )
128 93 18 6 divcld
 |-  ( ph -> ( ( ( C ^ 2 ) / 4 ) / M ) e. CC )
129 43 122 128 subsubd
 |-  ( ph -> ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) )
130 127 129 eqtr4d
 |-  ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) )
131 94 109 130 3eqtr3d
 |-  ( ph -> ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) )
132 83 87 131 3eqtrd
 |-  ( ph -> ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) )
133 51 132 oveq12d
 |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) - ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) )
134 48 49 addcld
 |-  ( ph -> ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) e. CC )
135 122 128 subcld
 |-  ( ph -> ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) e. CC )
136 43 134 135 pnncand
 |-  ( ph -> ( ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) - ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) )
137 128 negcld
 |-  ( ph -> -u ( ( ( C ^ 2 ) / 4 ) / M ) e. CC )
138 48 49 122 137 add4d
 |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) )
139 122 128 negsubd
 |-  ( ph -> ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) )
140 139 oveq2d
 |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) )
141 49 128 negsubd
 |-  ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( ( ( M + B ) / 2 ) ^ 2 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) )
142 1 2 3 4 5 6 7 8 9 10 dquartlem2
 |-  ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) = D )
143 141 142 eqtrd
 |-  ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = D )
144 143 oveq2d
 |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + D ) )
145 48 122 9 addassd
 |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + D ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) )
146 144 145 eqtrd
 |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) )
147 138 140 146 3eqtr3d
 |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) )
148 133 136 147 3eqtrd
 |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) )
149 13 20 addcld
 |-  ( ph -> ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) e. CC )
150 59 4 67 divcld
 |-  ( ph -> ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) e. CC )
151 subsq
 |-  ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) e. CC /\ ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) e. CC ) -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) )
152 149 150 151 syl2anc
 |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) )
153 148 152 eqtr3d
 |-  ( ph -> ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) )
154 153 eqeq1d
 |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) = 0 ) )
155 149 150 addcld
 |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) e. CC )
156 149 150 subcld
 |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) e. CC )
157 155 156 mul0ord
 |-  ( ph -> ( ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) = 0 <-> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 \/ ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) ) )
158 1 2 3 4 5 6 7 8 dquartlem1
 |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 <-> ( X = ( -u S + I ) \/ X = ( -u S - I ) ) ) )
159 4 negcld
 |-  ( ph -> -u S e. CC )
160 sqneg
 |-  ( ( 2 x. S ) e. CC -> ( -u ( 2 x. S ) ^ 2 ) = ( ( 2 x. S ) ^ 2 ) )
161 16 160 syl
 |-  ( ph -> ( -u ( 2 x. S ) ^ 2 ) = ( ( 2 x. S ) ^ 2 ) )
162 5 161 eqtr4d
 |-  ( ph -> M = ( -u ( 2 x. S ) ^ 2 ) )
163 mulneg2
 |-  ( ( 2 e. CC /\ S e. CC ) -> ( 2 x. -u S ) = -u ( 2 x. S ) )
164 14 4 163 sylancr
 |-  ( ph -> ( 2 x. -u S ) = -u ( 2 x. S ) )
165 164 oveq1d
 |-  ( ph -> ( ( 2 x. -u S ) ^ 2 ) = ( -u ( 2 x. S ) ^ 2 ) )
166 162 165 eqtr4d
 |-  ( ph -> M = ( ( 2 x. -u S ) ^ 2 ) )
167 4 sqcld
 |-  ( ph -> ( S ^ 2 ) e. CC )
168 167 negcld
 |-  ( ph -> -u ( S ^ 2 ) e. CC )
169 1 halfcld
 |-  ( ph -> ( B / 2 ) e. CC )
170 168 169 subcld
 |-  ( ph -> ( -u ( S ^ 2 ) - ( B / 2 ) ) e. CC )
171 58 4 67 divcld
 |-  ( ph -> ( ( C / 4 ) / S ) e. CC )
172 170 171 negsubd
 |-  ( ph -> ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + -u ( ( C / 4 ) / S ) ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) - ( ( C / 4 ) / S ) ) )
173 sqneg
 |-  ( S e. CC -> ( -u S ^ 2 ) = ( S ^ 2 ) )
174 4 173 syl
 |-  ( ph -> ( -u S ^ 2 ) = ( S ^ 2 ) )
175 174 eqcomd
 |-  ( ph -> ( S ^ 2 ) = ( -u S ^ 2 ) )
176 175 negeqd
 |-  ( ph -> -u ( S ^ 2 ) = -u ( -u S ^ 2 ) )
177 176 oveq1d
 |-  ( ph -> ( -u ( S ^ 2 ) - ( B / 2 ) ) = ( -u ( -u S ^ 2 ) - ( B / 2 ) ) )
178 58 4 67 divneg2d
 |-  ( ph -> -u ( ( C / 4 ) / S ) = ( ( C / 4 ) / -u S ) )
179 177 178 oveq12d
 |-  ( ph -> ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + -u ( ( C / 4 ) / S ) ) = ( ( -u ( -u S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / -u S ) ) )
180 12 172 179 3eqtr2d
 |-  ( ph -> ( J ^ 2 ) = ( ( -u ( -u S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / -u S ) ) )
181 1 2 3 159 166 6 11 180 dquartlem1
 |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = 0 <-> ( X = ( -u -u S + J ) \/ X = ( -u -u S - J ) ) ) )
182 59 4 67 divneg2d
 |-  ( ph -> -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) = ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) )
183 182 oveq2d
 |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) )
184 149 150 negsubd
 |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) )
185 183 184 eqtr3d
 |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) )
186 185 eqeq1d
 |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = 0 <-> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) )
187 4 negnegd
 |-  ( ph -> -u -u S = S )
188 187 oveq1d
 |-  ( ph -> ( -u -u S + J ) = ( S + J ) )
189 188 eqeq2d
 |-  ( ph -> ( X = ( -u -u S + J ) <-> X = ( S + J ) ) )
190 187 oveq1d
 |-  ( ph -> ( -u -u S - J ) = ( S - J ) )
191 190 eqeq2d
 |-  ( ph -> ( X = ( -u -u S - J ) <-> X = ( S - J ) ) )
192 189 191 orbi12d
 |-  ( ph -> ( ( X = ( -u -u S + J ) \/ X = ( -u -u S - J ) ) <-> ( X = ( S + J ) \/ X = ( S - J ) ) ) )
193 181 186 192 3bitr3d
 |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 <-> ( X = ( S + J ) \/ X = ( S - J ) ) ) )
194 158 193 orbi12d
 |-  ( ph -> ( ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 \/ ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) <-> ( ( X = ( -u S + I ) \/ X = ( -u S - I ) ) \/ ( X = ( S + J ) \/ X = ( S - J ) ) ) ) )
195 154 157 194 3bitrd
 |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> ( ( X = ( -u S + I ) \/ X = ( -u S - I ) ) \/ ( X = ( S + J ) \/ X = ( S - J ) ) ) ) )