Metamath Proof Explorer


Theorem drex1v

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drex1 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Feb-2005) (Revised by BJ, 17-Jun-2019)

Ref Expression
Hypothesis dral1v.1
|- ( A. x x = y -> ( ph <-> ps ) )
Assertion drex1v
|- ( A. x x = y -> ( E. x ph <-> E. y ps ) )

Proof

Step Hyp Ref Expression
1 dral1v.1
 |-  ( A. x x = y -> ( ph <-> ps ) )
2 1 notbid
 |-  ( A. x x = y -> ( -. ph <-> -. ps ) )
3 2 dral1v
 |-  ( A. x x = y -> ( A. x -. ph <-> A. y -. ps ) )
4 3 notbid
 |-  ( A. x x = y -> ( -. A. x -. ph <-> -. A. y -. ps ) )
5 df-ex
 |-  ( E. x ph <-> -. A. x -. ph )
6 df-ex
 |-  ( E. y ps <-> -. A. y -. ps )
7 4 5 6 3bitr4g
 |-  ( A. x x = y -> ( E. x ph <-> E. y ps ) )