Metamath Proof Explorer


Theorem drnf1v

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drnf1 with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 4-Oct-2016) (Revised by BJ, 17-Jun-2019)

Ref Expression
Hypothesis dral1v.1
|- ( A. x x = y -> ( ph <-> ps ) )
Assertion drnf1v
|- ( A. x x = y -> ( F/ x ph <-> F/ y ps ) )

Proof

Step Hyp Ref Expression
1 dral1v.1
 |-  ( A. x x = y -> ( ph <-> ps ) )
2 1 dral1v
 |-  ( A. x x = y -> ( A. x ph <-> A. y ps ) )
3 1 2 imbi12d
 |-  ( A. x x = y -> ( ( ph -> A. x ph ) <-> ( ps -> A. y ps ) ) )
4 3 dral1v
 |-  ( A. x x = y -> ( A. x ( ph -> A. x ph ) <-> A. y ( ps -> A. y ps ) ) )
5 nf5
 |-  ( F/ x ph <-> A. x ( ph -> A. x ph ) )
6 nf5
 |-  ( F/ y ps <-> A. y ( ps -> A. y ps ) )
7 4 5 6 3bitr4g
 |-  ( A. x x = y -> ( F/ x ph <-> F/ y ps ) )