Step |
Hyp |
Ref |
Expression |
1 |
|
drngid.b |
|- B = ( Base ` R ) |
2 |
|
drngid.z |
|- .0. = ( 0g ` R ) |
3 |
|
drngid.u |
|- .1. = ( 1r ` R ) |
4 |
|
drngid.g |
|- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
5 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
6 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
7 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
8 |
6 7 3
|
unitgrpid |
|- ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) ) |
9 |
5 8
|
syl |
|- ( R e. DivRing -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) ) |
10 |
1 6 2
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) |
11 |
10
|
simprbi |
|- ( R e. DivRing -> ( Unit ` R ) = ( B \ { .0. } ) ) |
12 |
11
|
oveq2d |
|- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
13 |
12 4
|
eqtr4di |
|- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G ) |
14 |
13
|
fveq2d |
|- ( R e. DivRing -> ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) = ( 0g ` G ) ) |
15 |
9 14
|
eqtrd |
|- ( R e. DivRing -> .1. = ( 0g ` G ) ) |