Metamath Proof Explorer


Theorem drngid

Description: A division ring's unit is the identity element of its multiplicative group. (Contributed by NM, 7-Sep-2011)

Ref Expression
Hypotheses drngid.b
|- B = ( Base ` R )
drngid.z
|- .0. = ( 0g ` R )
drngid.u
|- .1. = ( 1r ` R )
drngid.g
|- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) )
Assertion drngid
|- ( R e. DivRing -> .1. = ( 0g ` G ) )

Proof

Step Hyp Ref Expression
1 drngid.b
 |-  B = ( Base ` R )
2 drngid.z
 |-  .0. = ( 0g ` R )
3 drngid.u
 |-  .1. = ( 1r ` R )
4 drngid.g
 |-  G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) )
5 drngring
 |-  ( R e. DivRing -> R e. Ring )
6 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
7 eqid
 |-  ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) )
8 6 7 3 unitgrpid
 |-  ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) )
9 5 8 syl
 |-  ( R e. DivRing -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) )
10 1 6 2 isdrng
 |-  ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) )
11 10 simprbi
 |-  ( R e. DivRing -> ( Unit ` R ) = ( B \ { .0. } ) )
12 11 oveq2d
 |-  ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) )
13 12 4 eqtr4di
 |-  ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G )
14 13 fveq2d
 |-  ( R e. DivRing -> ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) = ( 0g ` G ) )
15 9 14 eqtrd
 |-  ( R e. DivRing -> .1. = ( 0g ` G ) )