| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngid.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | drngid.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | drngid.u |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | drngid.g |  |-  G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) | 
						
							| 5 |  | drngring |  |-  ( R e. DivRing -> R e. Ring ) | 
						
							| 6 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 7 |  | eqid |  |-  ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) | 
						
							| 8 | 6 7 3 | unitgrpid |  |-  ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) ) | 
						
							| 9 | 5 8 | syl |  |-  ( R e. DivRing -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) ) | 
						
							| 10 | 1 6 2 | isdrng |  |-  ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) | 
						
							| 11 | 10 | simprbi |  |-  ( R e. DivRing -> ( Unit ` R ) = ( B \ { .0. } ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) | 
						
							| 13 | 12 4 | eqtr4di |  |-  ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G ) | 
						
							| 14 | 13 | fveq2d |  |-  ( R e. DivRing -> ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) = ( 0g ` G ) ) | 
						
							| 15 | 9 14 | eqtrd |  |-  ( R e. DivRing -> .1. = ( 0g ` G ) ) |