| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngid2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | drngid2.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | drngid2.o |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | drngid2.u |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | df-3an |  |-  ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( ( I e. B /\ I =/= .0. ) /\ ( I .x. I ) = I ) ) | 
						
							| 6 |  | eldifsn |  |-  ( I e. ( B \ { .0. } ) <-> ( I e. B /\ I =/= .0. ) ) | 
						
							| 7 | 6 | anbi1i |  |-  ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( ( I e. B /\ I =/= .0. ) /\ ( I .x. I ) = I ) ) | 
						
							| 8 | 5 7 | bitr4i |  |-  ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) ) | 
						
							| 9 |  | eqid |  |-  ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) | 
						
							| 10 | 1 3 9 | drngmgp |  |-  ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) | 
						
							| 11 |  | difss |  |-  ( B \ { .0. } ) C_ B | 
						
							| 12 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 13 | 12 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 14 | 9 13 | ressbas2 |  |-  ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) | 
						
							| 15 | 11 14 | ax-mp |  |-  ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) | 
						
							| 16 | 1 | fvexi |  |-  B e. _V | 
						
							| 17 |  | difexg |  |-  ( B e. _V -> ( B \ { .0. } ) e. _V ) | 
						
							| 18 | 12 2 | mgpplusg |  |-  .x. = ( +g ` ( mulGrp ` R ) ) | 
						
							| 19 | 9 18 | ressplusg |  |-  ( ( B \ { .0. } ) e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) | 
						
							| 20 | 16 17 19 | mp2b |  |-  .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) | 
						
							| 22 | 15 20 21 | isgrpid2 |  |-  ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp -> ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) | 
						
							| 23 | 10 22 | syl |  |-  ( R e. DivRing -> ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) | 
						
							| 24 | 8 23 | bitrid |  |-  ( R e. DivRing -> ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) | 
						
							| 25 | 1 3 4 9 | drngid |  |-  ( R e. DivRing -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( R e. DivRing -> ( .1. = I <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) | 
						
							| 27 | 24 26 | bitr4d |  |-  ( R e. DivRing -> ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> .1. = I ) ) |