Step |
Hyp |
Ref |
Expression |
1 |
|
drngidl.b |
|- B = ( Base ` R ) |
2 |
|
drngidl.z |
|- .0. = ( 0g ` R ) |
3 |
|
drngidl.u |
|- U = ( LIdeal ` R ) |
4 |
1 2 3
|
drngnidl |
|- ( R e. DivRing -> U = { { .0. } , B } ) |
5 |
4
|
adantl |
|- ( ( R e. NzRing /\ R e. DivRing ) -> U = { { .0. } , B } ) |
6 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
7 |
6 2
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
8 |
7
|
adantr |
|- ( ( R e. NzRing /\ U = { { .0. } , B } ) -> ( 1r ` R ) =/= .0. ) |
9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
10 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
11 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
12 |
11
|
adantr |
|- ( ( R e. NzRing /\ U = { { .0. } , B } ) -> R e. Ring ) |
13 |
12
|
adantr |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> R e. Ring ) |
14 |
13
|
ad4antr |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> R e. Ring ) |
15 |
|
simp-4r |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> y e. B ) |
16 |
|
simplr |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> z e. B ) |
17 |
|
simpr |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> x e. ( B \ { .0. } ) ) |
18 |
17
|
eldifad |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> x e. B ) |
19 |
18
|
ad2antrr |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> x e. B ) |
20 |
19
|
ad2antrr |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> x e. B ) |
21 |
|
simpr |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> ( 1r ` R ) = ( z ( .r ` R ) y ) ) |
22 |
21
|
eqcomd |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> ( z ( .r ` R ) y ) = ( 1r ` R ) ) |
23 |
|
simpr |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( 1r ` R ) = ( y ( .r ` R ) x ) ) |
24 |
23
|
eqcomd |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( y ( .r ` R ) x ) = ( 1r ` R ) ) |
25 |
24
|
ad2antrr |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> ( y ( .r ` R ) x ) = ( 1r ` R ) ) |
26 |
1 2 6 9 10 14 15 16 20 22 25
|
ringinveu |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> x = z ) |
27 |
26
|
oveq1d |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> ( x ( .r ` R ) y ) = ( z ( .r ` R ) y ) ) |
28 |
27 22
|
eqtrd |
|- ( ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ z e. B ) /\ ( 1r ` R ) = ( z ( .r ` R ) y ) ) -> ( x ( .r ` R ) y ) = ( 1r ` R ) ) |
29 |
13
|
ad2antrr |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> R e. Ring ) |
30 |
|
simplr |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> y e. B ) |
31 |
1 6
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
32 |
13 31
|
syl |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> ( 1r ` R ) e. B ) |
33 |
32
|
ad2antrr |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( 1r ` R ) e. B ) |
34 |
30
|
snssd |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> { y } C_ B ) |
35 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
36 |
35 1 3
|
rspcl |
|- ( ( R e. Ring /\ { y } C_ B ) -> ( ( RSpan ` R ) ` { y } ) e. U ) |
37 |
29 34 36
|
syl2anc |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( ( RSpan ` R ) ` { y } ) e. U ) |
38 |
|
simp-4r |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> U = { { .0. } , B } ) |
39 |
37 38
|
eleqtrd |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( ( RSpan ` R ) ` { y } ) e. { { .0. } , B } ) |
40 |
|
elpri |
|- ( ( ( RSpan ` R ) ` { y } ) e. { { .0. } , B } -> ( ( ( RSpan ` R ) ` { y } ) = { .0. } \/ ( ( RSpan ` R ) ` { y } ) = B ) ) |
41 |
39 40
|
syl |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( ( ( RSpan ` R ) ` { y } ) = { .0. } \/ ( ( RSpan ` R ) ` { y } ) = B ) ) |
42 |
|
simplr |
|- ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ y = .0. ) -> ( 1r ` R ) = ( y ( .r ` R ) x ) ) |
43 |
|
simpr |
|- ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ y = .0. ) -> y = .0. ) |
44 |
43
|
oveq1d |
|- ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ y = .0. ) -> ( y ( .r ` R ) x ) = ( .0. ( .r ` R ) x ) ) |
45 |
1 9 2
|
ringlz |
|- ( ( R e. Ring /\ x e. B ) -> ( .0. ( .r ` R ) x ) = .0. ) |
46 |
13 18 45
|
syl2anc |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> ( .0. ( .r ` R ) x ) = .0. ) |
47 |
46
|
ad3antrrr |
|- ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ y = .0. ) -> ( .0. ( .r ` R ) x ) = .0. ) |
48 |
42 44 47
|
3eqtrd |
|- ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ y = .0. ) -> ( 1r ` R ) = .0. ) |
49 |
8
|
ad4antr |
|- ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ y = .0. ) -> ( 1r ` R ) =/= .0. ) |
50 |
49
|
neneqd |
|- ( ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) /\ y = .0. ) -> -. ( 1r ` R ) = .0. ) |
51 |
48 50
|
pm2.65da |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> -. y = .0. ) |
52 |
51
|
neqned |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> y =/= .0. ) |
53 |
1 2 35
|
pidlnz |
|- ( ( R e. Ring /\ y e. B /\ y =/= .0. ) -> ( ( RSpan ` R ) ` { y } ) =/= { .0. } ) |
54 |
29 30 52 53
|
syl3anc |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( ( RSpan ` R ) ` { y } ) =/= { .0. } ) |
55 |
54
|
neneqd |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> -. ( ( RSpan ` R ) ` { y } ) = { .0. } ) |
56 |
41 55
|
orcnd |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( ( RSpan ` R ) ` { y } ) = B ) |
57 |
33 56
|
eleqtrrd |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( 1r ` R ) e. ( ( RSpan ` R ) ` { y } ) ) |
58 |
1 9 35
|
rspsnel |
|- ( ( R e. Ring /\ y e. B ) -> ( ( 1r ` R ) e. ( ( RSpan ` R ) ` { y } ) <-> E. z e. B ( 1r ` R ) = ( z ( .r ` R ) y ) ) ) |
59 |
58
|
biimpa |
|- ( ( ( R e. Ring /\ y e. B ) /\ ( 1r ` R ) e. ( ( RSpan ` R ) ` { y } ) ) -> E. z e. B ( 1r ` R ) = ( z ( .r ` R ) y ) ) |
60 |
29 30 57 59
|
syl21anc |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> E. z e. B ( 1r ` R ) = ( z ( .r ` R ) y ) ) |
61 |
28 60
|
r19.29a |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( x ( .r ` R ) y ) = ( 1r ` R ) ) |
62 |
61 24
|
jca |
|- ( ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) -> ( ( x ( .r ` R ) y ) = ( 1r ` R ) /\ ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
63 |
62
|
anasss |
|- ( ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) /\ ( y e. B /\ ( 1r ` R ) = ( y ( .r ` R ) x ) ) ) -> ( ( x ( .r ` R ) y ) = ( 1r ` R ) /\ ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
64 |
18
|
snssd |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> { x } C_ B ) |
65 |
35 1 3
|
rspcl |
|- ( ( R e. Ring /\ { x } C_ B ) -> ( ( RSpan ` R ) ` { x } ) e. U ) |
66 |
13 64 65
|
syl2anc |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> ( ( RSpan ` R ) ` { x } ) e. U ) |
67 |
|
simplr |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> U = { { .0. } , B } ) |
68 |
66 67
|
eleqtrd |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> ( ( RSpan ` R ) ` { x } ) e. { { .0. } , B } ) |
69 |
|
elpri |
|- ( ( ( RSpan ` R ) ` { x } ) e. { { .0. } , B } -> ( ( ( RSpan ` R ) ` { x } ) = { .0. } \/ ( ( RSpan ` R ) ` { x } ) = B ) ) |
70 |
68 69
|
syl |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( RSpan ` R ) ` { x } ) = { .0. } \/ ( ( RSpan ` R ) ` { x } ) = B ) ) |
71 |
|
eldifsni |
|- ( x e. ( B \ { .0. } ) -> x =/= .0. ) |
72 |
71
|
adantl |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> x =/= .0. ) |
73 |
1 2 35
|
pidlnz |
|- ( ( R e. Ring /\ x e. B /\ x =/= .0. ) -> ( ( RSpan ` R ) ` { x } ) =/= { .0. } ) |
74 |
13 18 72 73
|
syl3anc |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> ( ( RSpan ` R ) ` { x } ) =/= { .0. } ) |
75 |
74
|
neneqd |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> -. ( ( RSpan ` R ) ` { x } ) = { .0. } ) |
76 |
70 75
|
orcnd |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> ( ( RSpan ` R ) ` { x } ) = B ) |
77 |
32 76
|
eleqtrrd |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> ( 1r ` R ) e. ( ( RSpan ` R ) ` { x } ) ) |
78 |
1 9 35
|
rspsnel |
|- ( ( R e. Ring /\ x e. B ) -> ( ( 1r ` R ) e. ( ( RSpan ` R ) ` { x } ) <-> E. y e. B ( 1r ` R ) = ( y ( .r ` R ) x ) ) ) |
79 |
78
|
biimpa |
|- ( ( ( R e. Ring /\ x e. B ) /\ ( 1r ` R ) e. ( ( RSpan ` R ) ` { x } ) ) -> E. y e. B ( 1r ` R ) = ( y ( .r ` R ) x ) ) |
80 |
13 18 77 79
|
syl21anc |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> E. y e. B ( 1r ` R ) = ( y ( .r ` R ) x ) ) |
81 |
63 80
|
reximddv |
|- ( ( ( R e. NzRing /\ U = { { .0. } , B } ) /\ x e. ( B \ { .0. } ) ) -> E. y e. B ( ( x ( .r ` R ) y ) = ( 1r ` R ) /\ ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
82 |
81
|
ralrimiva |
|- ( ( R e. NzRing /\ U = { { .0. } , B } ) -> A. x e. ( B \ { .0. } ) E. y e. B ( ( x ( .r ` R ) y ) = ( 1r ` R ) /\ ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
83 |
1 2 6 9 10 12
|
isdrng4 |
|- ( ( R e. NzRing /\ U = { { .0. } , B } ) -> ( R e. DivRing <-> ( ( 1r ` R ) =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x ( .r ` R ) y ) = ( 1r ` R ) /\ ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) ) ) |
84 |
8 82 83
|
mpbir2and |
|- ( ( R e. NzRing /\ U = { { .0. } , B } ) -> R e. DivRing ) |
85 |
5 84
|
impbida |
|- ( R e. NzRing -> ( R e. DivRing <-> U = { { .0. } , B } ) ) |