Step |
Hyp |
Ref |
Expression |
1 |
|
drngidlhash.u |
|- U = ( LIdeal ` R ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
4 |
2 3 1
|
drngnidl |
|- ( R e. DivRing -> U = { { ( 0g ` R ) } , ( Base ` R ) } ) |
5 |
4
|
fveq2d |
|- ( R e. DivRing -> ( # ` U ) = ( # ` { { ( 0g ` R ) } , ( Base ` R ) } ) ) |
6 |
|
drngnzr |
|- ( R e. DivRing -> R e. NzRing ) |
7 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
9 |
2 8
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
10 |
7 9
|
syl |
|- ( R e. NzRing -> ( 1r ` R ) e. ( Base ` R ) ) |
11 |
8 3
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
12 |
|
nelsn |
|- ( ( 1r ` R ) =/= ( 0g ` R ) -> -. ( 1r ` R ) e. { ( 0g ` R ) } ) |
13 |
11 12
|
syl |
|- ( R e. NzRing -> -. ( 1r ` R ) e. { ( 0g ` R ) } ) |
14 |
|
nelne1 |
|- ( ( ( 1r ` R ) e. ( Base ` R ) /\ -. ( 1r ` R ) e. { ( 0g ` R ) } ) -> ( Base ` R ) =/= { ( 0g ` R ) } ) |
15 |
10 13 14
|
syl2anc |
|- ( R e. NzRing -> ( Base ` R ) =/= { ( 0g ` R ) } ) |
16 |
15
|
necomd |
|- ( R e. NzRing -> { ( 0g ` R ) } =/= ( Base ` R ) ) |
17 |
6 16
|
syl |
|- ( R e. DivRing -> { ( 0g ` R ) } =/= ( Base ` R ) ) |
18 |
|
snex |
|- { ( 0g ` R ) } e. _V |
19 |
|
fvex |
|- ( Base ` R ) e. _V |
20 |
|
hashprg |
|- ( ( { ( 0g ` R ) } e. _V /\ ( Base ` R ) e. _V ) -> ( { ( 0g ` R ) } =/= ( Base ` R ) <-> ( # ` { { ( 0g ` R ) } , ( Base ` R ) } ) = 2 ) ) |
21 |
18 19 20
|
mp2an |
|- ( { ( 0g ` R ) } =/= ( Base ` R ) <-> ( # ` { { ( 0g ` R ) } , ( Base ` R ) } ) = 2 ) |
22 |
17 21
|
sylib |
|- ( R e. DivRing -> ( # ` { { ( 0g ` R ) } , ( Base ` R ) } ) = 2 ) |
23 |
5 22
|
eqtrd |
|- ( R e. DivRing -> ( # ` U ) = 2 ) |
24 |
23
|
adantl |
|- ( ( R e. Ring /\ R e. DivRing ) -> ( # ` U ) = 2 ) |
25 |
|
simpl |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> R e. Ring ) |
26 |
|
simplr |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) = 2 ) |
27 |
|
2re |
|- 2 e. RR |
28 |
26 27
|
eqeltrdi |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) e. RR ) |
29 |
|
simpl |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> R e. Ring ) |
30 |
|
simpr |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> { ( 0g ` R ) } = ( Base ` R ) ) |
31 |
30
|
fveq2d |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` { ( 0g ` R ) } ) = ( # ` ( Base ` R ) ) ) |
32 |
|
fvex |
|- ( 0g ` R ) e. _V |
33 |
|
hashsng |
|- ( ( 0g ` R ) e. _V -> ( # ` { ( 0g ` R ) } ) = 1 ) |
34 |
32 33
|
ax-mp |
|- ( # ` { ( 0g ` R ) } ) = 1 |
35 |
31 34
|
eqtr3di |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` ( Base ` R ) ) = 1 ) |
36 |
2 3
|
0ringidl |
|- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> ( LIdeal ` R ) = { { ( 0g ` R ) } } ) |
37 |
29 35 36
|
syl2anc |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( LIdeal ` R ) = { { ( 0g ` R ) } } ) |
38 |
1 37
|
eqtrid |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> U = { { ( 0g ` R ) } } ) |
39 |
38
|
fveq2d |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) = ( # ` { { ( 0g ` R ) } } ) ) |
40 |
|
hashsng |
|- ( { ( 0g ` R ) } e. _V -> ( # ` { { ( 0g ` R ) } } ) = 1 ) |
41 |
18 40
|
ax-mp |
|- ( # ` { { ( 0g ` R ) } } ) = 1 |
42 |
39 41
|
eqtrdi |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) = 1 ) |
43 |
42
|
adantlr |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) = 1 ) |
44 |
|
1lt2 |
|- 1 < 2 |
45 |
43 44
|
eqbrtrdi |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) < 2 ) |
46 |
28 45
|
ltned |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) =/= 2 ) |
47 |
46
|
neneqd |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> -. ( # ` U ) = 2 ) |
48 |
26 47
|
pm2.65da |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> -. { ( 0g ` R ) } = ( Base ` R ) ) |
49 |
48
|
neqned |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> { ( 0g ` R ) } =/= ( Base ` R ) ) |
50 |
2 3 8
|
01eq0ring |
|- ( ( R e. Ring /\ ( 0g ` R ) = ( 1r ` R ) ) -> ( Base ` R ) = { ( 0g ` R ) } ) |
51 |
50
|
eqcomd |
|- ( ( R e. Ring /\ ( 0g ` R ) = ( 1r ` R ) ) -> { ( 0g ` R ) } = ( Base ` R ) ) |
52 |
51
|
ex |
|- ( R e. Ring -> ( ( 0g ` R ) = ( 1r ` R ) -> { ( 0g ` R ) } = ( Base ` R ) ) ) |
53 |
52
|
necon3d |
|- ( R e. Ring -> ( { ( 0g ` R ) } =/= ( Base ` R ) -> ( 0g ` R ) =/= ( 1r ` R ) ) ) |
54 |
25 49 53
|
sylc |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> ( 0g ` R ) =/= ( 1r ` R ) ) |
55 |
54
|
necomd |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
56 |
8 3
|
isnzr |
|- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
57 |
25 55 56
|
sylanbrc |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> R e. NzRing ) |
58 |
1
|
fvexi |
|- U e. _V |
59 |
58
|
a1i |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> U e. _V ) |
60 |
|
simpr |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> ( # ` U ) = 2 ) |
61 |
1 3
|
lidl0 |
|- ( R e. Ring -> { ( 0g ` R ) } e. U ) |
62 |
25 61
|
syl |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> { ( 0g ` R ) } e. U ) |
63 |
1 2
|
lidl1 |
|- ( R e. Ring -> ( Base ` R ) e. U ) |
64 |
25 63
|
syl |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> ( Base ` R ) e. U ) |
65 |
|
hash2prd |
|- ( ( U e. _V /\ ( # ` U ) = 2 ) -> ( ( { ( 0g ` R ) } e. U /\ ( Base ` R ) e. U /\ { ( 0g ` R ) } =/= ( Base ` R ) ) -> U = { { ( 0g ` R ) } , ( Base ` R ) } ) ) |
66 |
65
|
imp |
|- ( ( ( U e. _V /\ ( # ` U ) = 2 ) /\ ( { ( 0g ` R ) } e. U /\ ( Base ` R ) e. U /\ { ( 0g ` R ) } =/= ( Base ` R ) ) ) -> U = { { ( 0g ` R ) } , ( Base ` R ) } ) |
67 |
59 60 62 64 49 66
|
syl23anc |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> U = { { ( 0g ` R ) } , ( Base ` R ) } ) |
68 |
2 3 1
|
drngidl |
|- ( R e. NzRing -> ( R e. DivRing <-> U = { { ( 0g ` R ) } , ( Base ` R ) } ) ) |
69 |
68
|
biimpar |
|- ( ( R e. NzRing /\ U = { { ( 0g ` R ) } , ( Base ` R ) } ) -> R e. DivRing ) |
70 |
57 67 69
|
syl2anc |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> R e. DivRing ) |
71 |
24 70
|
impbida |
|- ( R e. Ring -> ( R e. DivRing <-> ( # ` U ) = 2 ) ) |