| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invrcl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | invrcl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | invrcl.i |  |-  I = ( invr ` R ) | 
						
							| 4 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 5 | 1 4 2 | drngunit |  |-  ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) | 
						
							| 6 |  | drngring |  |-  ( R e. DivRing -> R e. Ring ) | 
						
							| 7 | 4 3 1 | ringinvcl |  |-  ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. B ) | 
						
							| 8 | 7 | ex |  |-  ( R e. Ring -> ( X e. ( Unit ` R ) -> ( I ` X ) e. B ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( I ` X ) e. B ) ) | 
						
							| 10 | 5 9 | sylbird |  |-  ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) ) | 
						
							| 11 | 10 | 3impib |  |-  ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) |