Description: Closure of the multiplicative inverse in a division ring. ( reccld analog). (Contributed by SN, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invrcl.b | |- B = ( Base ` R ) | |
| invrcl.z | |- .0. = ( 0g ` R ) | ||
| invrcl.i | |- I = ( invr ` R ) | ||
| drnginvrcld.r | |- ( ph -> R e. DivRing ) | ||
| drnginvrcld.x | |- ( ph -> X e. B ) | ||
| drnginvrcld.1 | |- ( ph -> X =/= .0. ) | ||
| Assertion | drnginvrcld | |- ( ph -> ( I ` X ) e. B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | invrcl.b | |- B = ( Base ` R ) | |
| 2 | invrcl.z | |- .0. = ( 0g ` R ) | |
| 3 | invrcl.i | |- I = ( invr ` R ) | |
| 4 | drnginvrcld.r | |- ( ph -> R e. DivRing ) | |
| 5 | drnginvrcld.x | |- ( ph -> X e. B ) | |
| 6 | drnginvrcld.1 | |- ( ph -> X =/= .0. ) | |
| 7 | 1 2 3 | drnginvrcl | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) | 
| 8 | 4 5 6 7 | syl3anc | |- ( ph -> ( I ` X ) e. B ) |