Step |
Hyp |
Ref |
Expression |
1 |
|
invrcl.b |
|- B = ( Base ` R ) |
2 |
|
invrcl.z |
|- .0. = ( 0g ` R ) |
3 |
|
invrcl.i |
|- I = ( invr ` R ) |
4 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
5 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
6 |
5 3
|
unitinvcl |
|- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. ( Unit ` R ) ) |
7 |
6
|
ex |
|- ( R e. Ring -> ( X e. ( Unit ` R ) -> ( I ` X ) e. ( Unit ` R ) ) ) |
8 |
4 7
|
syl |
|- ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( I ` X ) e. ( Unit ` R ) ) ) |
9 |
1 5 2
|
drngunit |
|- ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) |
10 |
1 5 2
|
drngunit |
|- ( R e. DivRing -> ( ( I ` X ) e. ( Unit ` R ) <-> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) ) |
11 |
8 9 10
|
3imtr3d |
|- ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) ) |
12 |
11
|
3impib |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) |
13 |
12
|
simprd |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) =/= .0. ) |