| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invrcl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | invrcl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | invrcl.i |  |-  I = ( invr ` R ) | 
						
							| 4 |  | drngring |  |-  ( R e. DivRing -> R e. Ring ) | 
						
							| 5 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 6 | 5 3 | unitinvcl |  |-  ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. ( Unit ` R ) ) | 
						
							| 7 | 6 | ex |  |-  ( R e. Ring -> ( X e. ( Unit ` R ) -> ( I ` X ) e. ( Unit ` R ) ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( I ` X ) e. ( Unit ` R ) ) ) | 
						
							| 9 | 1 5 2 | drngunit |  |-  ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) | 
						
							| 10 | 1 5 2 | drngunit |  |-  ( R e. DivRing -> ( ( I ` X ) e. ( Unit ` R ) <-> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) ) | 
						
							| 11 | 8 9 10 | 3imtr3d |  |-  ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) ) | 
						
							| 12 | 11 | 3impib |  |-  ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) | 
						
							| 13 | 12 | simprd |  |-  ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) =/= .0. ) |