| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drnginvrl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | drnginvrl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | drnginvrl.t |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | drnginvrl.u |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | drnginvrl.i |  |-  I = ( invr ` R ) | 
						
							| 6 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 7 | 1 6 2 | drngunit |  |-  ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) | 
						
							| 8 |  | drngring |  |-  ( R e. DivRing -> R e. Ring ) | 
						
							| 9 | 6 5 3 4 | unitrinv |  |-  ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( X .x. ( I ` X ) ) = .1. ) | 
						
							| 10 | 9 | ex |  |-  ( R e. Ring -> ( X e. ( Unit ` R ) -> ( X .x. ( I ` X ) ) = .1. ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( X .x. ( I ` X ) ) = .1. ) ) | 
						
							| 12 | 7 11 | sylbird |  |-  ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( X .x. ( I ` X ) ) = .1. ) ) | 
						
							| 13 | 12 | 3impib |  |-  ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( X .x. ( I ` X ) ) = .1. ) |