Step |
Hyp |
Ref |
Expression |
1 |
|
drnglidl1ne0.1 |
|- .0. = ( 0g ` R ) |
2 |
|
drnglidl1ne0.2 |
|- B = ( Base ` R ) |
3 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
4 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
5 |
2 4
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
6 |
3 5
|
syl |
|- ( R e. NzRing -> ( 1r ` R ) e. B ) |
7 |
4 1
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
8 |
|
nelsn |
|- ( ( 1r ` R ) =/= .0. -> -. ( 1r ` R ) e. { .0. } ) |
9 |
7 8
|
syl |
|- ( R e. NzRing -> -. ( 1r ` R ) e. { .0. } ) |
10 |
|
nelne1 |
|- ( ( ( 1r ` R ) e. B /\ -. ( 1r ` R ) e. { .0. } ) -> B =/= { .0. } ) |
11 |
6 9 10
|
syl2anc |
|- ( R e. NzRing -> B =/= { .0. } ) |