| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngring |  |-  ( R e. DivRing -> R e. Ring ) | 
						
							| 2 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 3 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 4 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 5 | 2 3 4 | drngnidl |  |-  ( R e. DivRing -> ( LIdeal ` R ) = { { ( 0g ` R ) } , ( Base ` R ) } ) | 
						
							| 6 |  | eqid |  |-  ( LPIdeal ` R ) = ( LPIdeal ` R ) | 
						
							| 7 | 6 3 | lpi0 |  |-  ( R e. Ring -> { ( 0g ` R ) } e. ( LPIdeal ` R ) ) | 
						
							| 8 | 6 2 | lpi1 |  |-  ( R e. Ring -> ( Base ` R ) e. ( LPIdeal ` R ) ) | 
						
							| 9 | 7 8 | prssd |  |-  ( R e. Ring -> { { ( 0g ` R ) } , ( Base ` R ) } C_ ( LPIdeal ` R ) ) | 
						
							| 10 | 1 9 | syl |  |-  ( R e. DivRing -> { { ( 0g ` R ) } , ( Base ` R ) } C_ ( LPIdeal ` R ) ) | 
						
							| 11 | 5 10 | eqsstrd |  |-  ( R e. DivRing -> ( LIdeal ` R ) C_ ( LPIdeal ` R ) ) | 
						
							| 12 | 6 4 | islpir2 |  |-  ( R e. LPIR <-> ( R e. Ring /\ ( LIdeal ` R ) C_ ( LPIdeal ` R ) ) ) | 
						
							| 13 | 1 11 12 | sylanbrc |  |-  ( R e. DivRing -> R e. LPIR ) |