Step |
Hyp |
Ref |
Expression |
1 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
4 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
5 |
2 3 4
|
drngnidl |
|- ( R e. DivRing -> ( LIdeal ` R ) = { { ( 0g ` R ) } , ( Base ` R ) } ) |
6 |
|
eqid |
|- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
7 |
6 3
|
lpi0 |
|- ( R e. Ring -> { ( 0g ` R ) } e. ( LPIdeal ` R ) ) |
8 |
6 2
|
lpi1 |
|- ( R e. Ring -> ( Base ` R ) e. ( LPIdeal ` R ) ) |
9 |
7 8
|
prssd |
|- ( R e. Ring -> { { ( 0g ` R ) } , ( Base ` R ) } C_ ( LPIdeal ` R ) ) |
10 |
1 9
|
syl |
|- ( R e. DivRing -> { { ( 0g ` R ) } , ( Base ` R ) } C_ ( LPIdeal ` R ) ) |
11 |
5 10
|
eqsstrd |
|- ( R e. DivRing -> ( LIdeal ` R ) C_ ( LPIdeal ` R ) ) |
12 |
6 4
|
islpir2 |
|- ( R e. LPIR <-> ( R e. Ring /\ ( LIdeal ` R ) C_ ( LPIdeal ` R ) ) ) |
13 |
1 11 12
|
sylanbrc |
|- ( R e. DivRing -> R e. LPIR ) |