Step |
Hyp |
Ref |
Expression |
1 |
|
drngmcl.b |
|- B = ( Base ` R ) |
2 |
|
drngmcl.t |
|- .x. = ( .r ` R ) |
3 |
|
drngmcl.z |
|- .0. = ( 0g ` R ) |
4 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
5 |
|
eldifi |
|- ( X e. ( B \ { .0. } ) -> X e. B ) |
6 |
|
eldifi |
|- ( Y e. ( B \ { .0. } ) -> Y e. B ) |
7 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
8 |
4 5 6 7
|
syl3an |
|- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. B ) |
9 |
|
drngdomn |
|- ( R e. DivRing -> R e. Domn ) |
10 |
|
eldifsn |
|- ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) |
11 |
10
|
biimpi |
|- ( X e. ( B \ { .0. } ) -> ( X e. B /\ X =/= .0. ) ) |
12 |
|
eldifsn |
|- ( Y e. ( B \ { .0. } ) <-> ( Y e. B /\ Y =/= .0. ) ) |
13 |
12
|
biimpi |
|- ( Y e. ( B \ { .0. } ) -> ( Y e. B /\ Y =/= .0. ) ) |
14 |
1 2 3
|
domnmuln0 |
|- ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |
15 |
9 11 13 14
|
syl3an |
|- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) =/= .0. ) |
16 |
8 15
|
eldifsnd |
|- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |