Step |
Hyp |
Ref |
Expression |
1 |
|
drngmcl.b |
|- B = ( Base ` R ) |
2 |
|
drngmcl.t |
|- .x. = ( .r ` R ) |
3 |
|
drngmcl.z |
|- .0. = ( 0g ` R ) |
4 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
5 |
1 3 4
|
drngmgp |
|- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) |
6 |
|
difss |
|- ( B \ { .0. } ) C_ B |
7 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
8 |
7 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
9 |
4 8
|
ressbas2 |
|- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
10 |
6 9
|
ax-mp |
|- ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
11 |
1
|
fvexi |
|- B e. _V |
12 |
|
difexg |
|- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
13 |
7 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
14 |
4 13
|
ressplusg |
|- ( ( B \ { .0. } ) e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
15 |
11 12 14
|
mp2b |
|- .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
16 |
10 15
|
grpcl |
|- ( ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |
17 |
5 16
|
syl3an1 |
|- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |