| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngmcl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | drngmcl.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | drngmcl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | drngring |  |-  ( R e. DivRing -> R e. Ring ) | 
						
							| 5 |  | eldifi |  |-  ( X e. ( B \ { .0. } ) -> X e. B ) | 
						
							| 6 |  | eldifi |  |-  ( Y e. ( B \ { .0. } ) -> Y e. B ) | 
						
							| 7 | 1 2 | ringcl |  |-  ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) | 
						
							| 8 | 4 5 6 7 | syl3an |  |-  ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. B ) | 
						
							| 9 |  | drngdomn |  |-  ( R e. DivRing -> R e. Domn ) | 
						
							| 10 |  | eldifsn |  |-  ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) | 
						
							| 11 | 10 | biimpi |  |-  ( X e. ( B \ { .0. } ) -> ( X e. B /\ X =/= .0. ) ) | 
						
							| 12 |  | eldifsn |  |-  ( Y e. ( B \ { .0. } ) <-> ( Y e. B /\ Y =/= .0. ) ) | 
						
							| 13 | 12 | biimpi |  |-  ( Y e. ( B \ { .0. } ) -> ( Y e. B /\ Y =/= .0. ) ) | 
						
							| 14 | 1 2 3 | domnmuln0 |  |-  ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) | 
						
							| 15 | 9 11 13 14 | syl3an |  |-  ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) =/= .0. ) | 
						
							| 16 | 8 15 | eldifsnd |  |-  ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |