Metamath Proof Explorer


Theorem drngmcl

Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011)

Ref Expression
Hypotheses drngmcl.b
|- B = ( Base ` R )
drngmcl.t
|- .x. = ( .r ` R )
drngmcl.z
|- .0. = ( 0g ` R )
Assertion drngmcl
|- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) )

Proof

Step Hyp Ref Expression
1 drngmcl.b
 |-  B = ( Base ` R )
2 drngmcl.t
 |-  .x. = ( .r ` R )
3 drngmcl.z
 |-  .0. = ( 0g ` R )
4 eqid
 |-  ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) )
5 1 3 4 drngmgp
 |-  ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp )
6 difss
 |-  ( B \ { .0. } ) C_ B
7 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
8 7 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
9 4 8 ressbas2
 |-  ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) )
10 6 9 ax-mp
 |-  ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) )
11 1 fvexi
 |-  B e. _V
12 difexg
 |-  ( B e. _V -> ( B \ { .0. } ) e. _V )
13 7 2 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
14 4 13 ressplusg
 |-  ( ( B \ { .0. } ) e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) )
15 11 12 14 mp2b
 |-  .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) )
16 10 15 grpcl
 |-  ( ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) )
17 5 16 syl3an1
 |-  ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) )