| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngmcl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | drngmcl.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | drngmcl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | eqid |  |-  ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) | 
						
							| 5 | 1 3 4 | drngmgp |  |-  ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) | 
						
							| 6 |  | difss |  |-  ( B \ { .0. } ) C_ B | 
						
							| 7 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 8 | 7 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 9 | 4 8 | ressbas2 |  |-  ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) | 
						
							| 10 | 6 9 | ax-mp |  |-  ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) | 
						
							| 11 | 1 | fvexi |  |-  B e. _V | 
						
							| 12 |  | difexg |  |-  ( B e. _V -> ( B \ { .0. } ) e. _V ) | 
						
							| 13 | 7 2 | mgpplusg |  |-  .x. = ( +g ` ( mulGrp ` R ) ) | 
						
							| 14 | 4 13 | ressplusg |  |-  ( ( B \ { .0. } ) e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) | 
						
							| 15 | 11 12 14 | mp2b |  |-  .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) | 
						
							| 16 | 10 15 | grpcl |  |-  ( ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) | 
						
							| 17 | 5 16 | syl3an1 |  |-  ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |