Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014) (Proof shortened by SN, 25-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmuleq0.b | |- B = ( Base ` R ) |
|
| drngmuleq0.o | |- .0. = ( 0g ` R ) |
||
| drngmuleq0.t | |- .x. = ( .r ` R ) |
||
| drngmuleq0.r | |- ( ph -> R e. DivRing ) |
||
| drngmuleq0.x | |- ( ph -> X e. B ) |
||
| drngmuleq0.y | |- ( ph -> Y e. B ) |
||
| Assertion | drngmul0or | |- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmuleq0.b | |- B = ( Base ` R ) |
|
| 2 | drngmuleq0.o | |- .0. = ( 0g ` R ) |
|
| 3 | drngmuleq0.t | |- .x. = ( .r ` R ) |
|
| 4 | drngmuleq0.r | |- ( ph -> R e. DivRing ) |
|
| 5 | drngmuleq0.x | |- ( ph -> X e. B ) |
|
| 6 | drngmuleq0.y | |- ( ph -> Y e. B ) |
|
| 7 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
| 8 | 4 7 | syl | |- ( ph -> R e. Domn ) |
| 9 | 1 3 2 | domneq0 | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 10 | 8 5 6 9 | syl3anc | |- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |