Metamath Proof Explorer


Theorem drngmul0or

Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014) (Proof shortened by SN, 25-Jun-2025)

Ref Expression
Hypotheses drngmuleq0.b
|- B = ( Base ` R )
drngmuleq0.o
|- .0. = ( 0g ` R )
drngmuleq0.t
|- .x. = ( .r ` R )
drngmuleq0.r
|- ( ph -> R e. DivRing )
drngmuleq0.x
|- ( ph -> X e. B )
drngmuleq0.y
|- ( ph -> Y e. B )
Assertion drngmul0or
|- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) )

Proof

Step Hyp Ref Expression
1 drngmuleq0.b
 |-  B = ( Base ` R )
2 drngmuleq0.o
 |-  .0. = ( 0g ` R )
3 drngmuleq0.t
 |-  .x. = ( .r ` R )
4 drngmuleq0.r
 |-  ( ph -> R e. DivRing )
5 drngmuleq0.x
 |-  ( ph -> X e. B )
6 drngmuleq0.y
 |-  ( ph -> Y e. B )
7 drngdomn
 |-  ( R e. DivRing -> R e. Domn )
8 4 7 syl
 |-  ( ph -> R e. Domn )
9 1 3 2 domneq0
 |-  ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) )
10 8 5 6 9 syl3anc
 |-  ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) )