Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014) (Proof shortened by SN, 25-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngmuleq0.b | |- B = ( Base ` R ) |
|
drngmuleq0.o | |- .0. = ( 0g ` R ) |
||
drngmuleq0.t | |- .x. = ( .r ` R ) |
||
drngmuleq0.r | |- ( ph -> R e. DivRing ) |
||
drngmuleq0.x | |- ( ph -> X e. B ) |
||
drngmuleq0.y | |- ( ph -> Y e. B ) |
||
Assertion | drngmul0or | |- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmuleq0.b | |- B = ( Base ` R ) |
|
2 | drngmuleq0.o | |- .0. = ( 0g ` R ) |
|
3 | drngmuleq0.t | |- .x. = ( .r ` R ) |
|
4 | drngmuleq0.r | |- ( ph -> R e. DivRing ) |
|
5 | drngmuleq0.x | |- ( ph -> X e. B ) |
|
6 | drngmuleq0.y | |- ( ph -> Y e. B ) |
|
7 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
8 | 4 7 | syl | |- ( ph -> R e. Domn ) |
9 | 1 3 2 | domneq0 | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
10 | 8 5 6 9 | syl3anc | |- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |