| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngmuleq0.b |
|- B = ( Base ` R ) |
| 2 |
|
drngmuleq0.o |
|- .0. = ( 0g ` R ) |
| 3 |
|
drngmuleq0.t |
|- .x. = ( .r ` R ) |
| 4 |
|
drngmuleq0.r |
|- ( ph -> R e. DivRing ) |
| 5 |
|
drngmuleq0.x |
|- ( ph -> X e. B ) |
| 6 |
|
drngmuleq0.y |
|- ( ph -> Y e. B ) |
| 7 |
1 2 3 4 5 6
|
drngmul0or |
|- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 8 |
7
|
necon3abid |
|- ( ph -> ( ( X .x. Y ) =/= .0. <-> -. ( X = .0. \/ Y = .0. ) ) ) |
| 9 |
|
neanior |
|- ( ( X =/= .0. /\ Y =/= .0. ) <-> -. ( X = .0. \/ Y = .0. ) ) |
| 10 |
8 9
|
bitr4di |
|- ( ph -> ( ( X .x. Y ) =/= .0. <-> ( X =/= .0. /\ Y =/= .0. ) ) ) |