Step |
Hyp |
Ref |
Expression |
1 |
|
drngmxidl.1 |
|- .0. = ( 0g ` R ) |
2 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3
|
mxidlidl |
|- ( ( R e. Ring /\ i e. ( MaxIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) |
5 |
4
|
ex |
|- ( R e. Ring -> ( i e. ( MaxIdeal ` R ) -> i e. ( LIdeal ` R ) ) ) |
6 |
5
|
ssrdv |
|- ( R e. Ring -> ( MaxIdeal ` R ) C_ ( LIdeal ` R ) ) |
7 |
2 6
|
syl |
|- ( R e. DivRing -> ( MaxIdeal ` R ) C_ ( LIdeal ` R ) ) |
8 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
9 |
3 1 8
|
drngnidl |
|- ( R e. DivRing -> ( LIdeal ` R ) = { { .0. } , ( Base ` R ) } ) |
10 |
7 9
|
sseqtrd |
|- ( R e. DivRing -> ( MaxIdeal ` R ) C_ { { .0. } , ( Base ` R ) } ) |
11 |
3
|
mxidlnr |
|- ( ( R e. Ring /\ i e. ( MaxIdeal ` R ) ) -> i =/= ( Base ` R ) ) |
12 |
2 11
|
sylan |
|- ( ( R e. DivRing /\ i e. ( MaxIdeal ` R ) ) -> i =/= ( Base ` R ) ) |
13 |
12
|
nelrdva |
|- ( R e. DivRing -> -. ( Base ` R ) e. ( MaxIdeal ` R ) ) |
14 |
|
ssdifsn |
|- ( ( MaxIdeal ` R ) C_ ( { { .0. } , ( Base ` R ) } \ { ( Base ` R ) } ) <-> ( ( MaxIdeal ` R ) C_ { { .0. } , ( Base ` R ) } /\ -. ( Base ` R ) e. ( MaxIdeal ` R ) ) ) |
15 |
10 13 14
|
sylanbrc |
|- ( R e. DivRing -> ( MaxIdeal ` R ) C_ ( { { .0. } , ( Base ` R ) } \ { ( Base ` R ) } ) ) |
16 |
|
drngnzr |
|- ( R e. DivRing -> R e. NzRing ) |
17 |
1 3
|
drnglidl1ne0 |
|- ( R e. NzRing -> ( Base ` R ) =/= { .0. } ) |
18 |
17
|
necomd |
|- ( R e. NzRing -> { .0. } =/= ( Base ` R ) ) |
19 |
|
difprsn2 |
|- ( { .0. } =/= ( Base ` R ) -> ( { { .0. } , ( Base ` R ) } \ { ( Base ` R ) } ) = { { .0. } } ) |
20 |
16 18 19
|
3syl |
|- ( R e. DivRing -> ( { { .0. } , ( Base ` R ) } \ { ( Base ` R ) } ) = { { .0. } } ) |
21 |
15 20
|
sseqtrd |
|- ( R e. DivRing -> ( MaxIdeal ` R ) C_ { { .0. } } ) |
22 |
1
|
drng0mxidl |
|- ( R e. DivRing -> { .0. } e. ( MaxIdeal ` R ) ) |
23 |
22
|
snssd |
|- ( R e. DivRing -> { { .0. } } C_ ( MaxIdeal ` R ) ) |
24 |
21 23
|
eqssd |
|- ( R e. DivRing -> ( MaxIdeal ` R ) = { { .0. } } ) |