Step |
Hyp |
Ref |
Expression |
1 |
|
drngnidl.b |
|- B = ( Base ` R ) |
2 |
|
drngnidl.z |
|- .0. = ( 0g ` R ) |
3 |
|
drngnidl.u |
|- U = ( LIdeal ` R ) |
4 |
|
animorrl |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a = { .0. } ) -> ( a = { .0. } \/ a = B ) ) |
5 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
6 |
5
|
ad2antrr |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> R e. Ring ) |
7 |
|
simplr |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> a e. U ) |
8 |
|
simpr |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> a =/= { .0. } ) |
9 |
3 2
|
lidlnz |
|- ( ( R e. Ring /\ a e. U /\ a =/= { .0. } ) -> E. b e. a b =/= .0. ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> E. b e. a b =/= .0. ) |
11 |
|
simpll |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> R e. DivRing ) |
12 |
1 3
|
lidlss |
|- ( a e. U -> a C_ B ) |
13 |
12
|
adantl |
|- ( ( R e. DivRing /\ a e. U ) -> a C_ B ) |
14 |
13
|
sselda |
|- ( ( ( R e. DivRing /\ a e. U ) /\ b e. a ) -> b e. B ) |
15 |
14
|
adantrr |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> b e. B ) |
16 |
|
simprr |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> b =/= .0. ) |
17 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
18 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
19 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
20 |
1 2 17 18 19
|
drnginvrl |
|- ( ( R e. DivRing /\ b e. B /\ b =/= .0. ) -> ( ( ( invr ` R ) ` b ) ( .r ` R ) b ) = ( 1r ` R ) ) |
21 |
11 15 16 20
|
syl3anc |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> ( ( ( invr ` R ) ` b ) ( .r ` R ) b ) = ( 1r ` R ) ) |
22 |
5
|
ad2antrr |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> R e. Ring ) |
23 |
|
simplr |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> a e. U ) |
24 |
1 2 19
|
drnginvrcl |
|- ( ( R e. DivRing /\ b e. B /\ b =/= .0. ) -> ( ( invr ` R ) ` b ) e. B ) |
25 |
11 15 16 24
|
syl3anc |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> ( ( invr ` R ) ` b ) e. B ) |
26 |
|
simprl |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> b e. a ) |
27 |
3 1 17
|
lidlmcl |
|- ( ( ( R e. Ring /\ a e. U ) /\ ( ( ( invr ` R ) ` b ) e. B /\ b e. a ) ) -> ( ( ( invr ` R ) ` b ) ( .r ` R ) b ) e. a ) |
28 |
22 23 25 26 27
|
syl22anc |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> ( ( ( invr ` R ) ` b ) ( .r ` R ) b ) e. a ) |
29 |
21 28
|
eqeltrrd |
|- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> ( 1r ` R ) e. a ) |
30 |
29
|
rexlimdvaa |
|- ( ( R e. DivRing /\ a e. U ) -> ( E. b e. a b =/= .0. -> ( 1r ` R ) e. a ) ) |
31 |
30
|
imp |
|- ( ( ( R e. DivRing /\ a e. U ) /\ E. b e. a b =/= .0. ) -> ( 1r ` R ) e. a ) |
32 |
10 31
|
syldan |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> ( 1r ` R ) e. a ) |
33 |
3 1 18
|
lidl1el |
|- ( ( R e. Ring /\ a e. U ) -> ( ( 1r ` R ) e. a <-> a = B ) ) |
34 |
5 33
|
sylan |
|- ( ( R e. DivRing /\ a e. U ) -> ( ( 1r ` R ) e. a <-> a = B ) ) |
35 |
34
|
adantr |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> ( ( 1r ` R ) e. a <-> a = B ) ) |
36 |
32 35
|
mpbid |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> a = B ) |
37 |
36
|
olcd |
|- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> ( a = { .0. } \/ a = B ) ) |
38 |
4 37
|
pm2.61dane |
|- ( ( R e. DivRing /\ a e. U ) -> ( a = { .0. } \/ a = B ) ) |
39 |
|
vex |
|- a e. _V |
40 |
39
|
elpr |
|- ( a e. { { .0. } , B } <-> ( a = { .0. } \/ a = B ) ) |
41 |
38 40
|
sylibr |
|- ( ( R e. DivRing /\ a e. U ) -> a e. { { .0. } , B } ) |
42 |
41
|
ex |
|- ( R e. DivRing -> ( a e. U -> a e. { { .0. } , B } ) ) |
43 |
42
|
ssrdv |
|- ( R e. DivRing -> U C_ { { .0. } , B } ) |
44 |
3 2
|
lidl0 |
|- ( R e. Ring -> { .0. } e. U ) |
45 |
3 1
|
lidl1 |
|- ( R e. Ring -> B e. U ) |
46 |
44 45
|
prssd |
|- ( R e. Ring -> { { .0. } , B } C_ U ) |
47 |
5 46
|
syl |
|- ( R e. DivRing -> { { .0. } , B } C_ U ) |
48 |
43 47
|
eqssd |
|- ( R e. DivRing -> U = { { .0. } , B } ) |