Description: All division rings are nonzero. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | drngnzr | |- ( R e. DivRing -> R e. NzRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
2 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
4 | 2 3 | drngunz | |- ( R e. DivRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
5 | 3 2 | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
6 | 1 4 5 | sylanbrc | |- ( R e. DivRing -> R e. NzRing ) |