Step |
Hyp |
Ref |
Expression |
1 |
|
drngprop.b |
|- ( Base ` K ) = ( Base ` L ) |
2 |
|
drngprop.p |
|- ( +g ` K ) = ( +g ` L ) |
3 |
|
drngprop.m |
|- ( .r ` K ) = ( .r ` L ) |
4 |
|
eqidd |
|- ( K e. Ring -> ( Base ` K ) = ( Base ` K ) ) |
5 |
1
|
a1i |
|- ( K e. Ring -> ( Base ` K ) = ( Base ` L ) ) |
6 |
3
|
oveqi |
|- ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) |
7 |
6
|
a1i |
|- ( ( K e. Ring /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
8 |
4 5 7
|
unitpropd |
|- ( K e. Ring -> ( Unit ` K ) = ( Unit ` L ) ) |
9 |
2
|
oveqi |
|- ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) |
10 |
9
|
a1i |
|- ( ( K e. Ring /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
11 |
4 5 10
|
grpidpropd |
|- ( K e. Ring -> ( 0g ` K ) = ( 0g ` L ) ) |
12 |
11
|
sneqd |
|- ( K e. Ring -> { ( 0g ` K ) } = { ( 0g ` L ) } ) |
13 |
12
|
difeq2d |
|- ( K e. Ring -> ( ( Base ` K ) \ { ( 0g ` K ) } ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) |
14 |
8 13
|
eqeq12d |
|- ( K e. Ring -> ( ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) <-> ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
15 |
14
|
pm5.32i |
|- ( ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) <-> ( K e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
16 |
1 2 3
|
ringprop |
|- ( K e. Ring <-> L e. Ring ) |
17 |
16
|
anbi1i |
|- ( ( K e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
18 |
15 17
|
bitri |
|- ( ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
|
eqid |
|- ( Unit ` K ) = ( Unit ` K ) |
21 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
22 |
19 20 21
|
isdrng |
|- ( K e. DivRing <-> ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) ) |
23 |
|
eqid |
|- ( Unit ` L ) = ( Unit ` L ) |
24 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
25 |
1 23 24
|
isdrng |
|- ( L e. DivRing <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
26 |
18 22 25
|
3bitr4i |
|- ( K e. DivRing <-> L e. DivRing ) |