Step |
Hyp |
Ref |
Expression |
1 |
|
drnguc1p.p |
|- P = ( Poly1 ` R ) |
2 |
|
drnguc1p.b |
|- B = ( Base ` P ) |
3 |
|
drnguc1p.z |
|- .0. = ( 0g ` P ) |
4 |
|
drnguc1p.c |
|- C = ( Unic1p ` R ) |
5 |
|
simp2 |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> F e. B ) |
6 |
|
simp3 |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> F =/= .0. ) |
7 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
7 2 1 8
|
coe1f |
|- ( F e. B -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) |
10 |
9
|
3ad2ant2 |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) |
11 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
12 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
13 |
12 1 3 2
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( ( deg1 ` R ) ` F ) e. NN0 ) |
14 |
11 13
|
syl3an1 |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> ( ( deg1 ` R ) ` F ) e. NN0 ) |
15 |
10 14
|
ffvelrnd |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Base ` R ) ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
12 1 3 2 16 7
|
deg1ldg |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) =/= ( 0g ` R ) ) |
18 |
11 17
|
syl3an1 |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) =/= ( 0g ` R ) ) |
19 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
20 |
8 19 16
|
drngunit |
|- ( R e. DivRing -> ( ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Unit ` R ) <-> ( ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Base ` R ) /\ ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) =/= ( 0g ` R ) ) ) ) |
21 |
20
|
3ad2ant1 |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> ( ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Unit ` R ) <-> ( ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Base ` R ) /\ ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) =/= ( 0g ` R ) ) ) ) |
22 |
15 18 21
|
mpbir2and |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Unit ` R ) ) |
23 |
1 2 3 12 4 19
|
isuc1p |
|- ( F e. C <-> ( F e. B /\ F =/= .0. /\ ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Unit ` R ) ) ) |
24 |
5 6 22 23
|
syl3anbrc |
|- ( ( R e. DivRing /\ F e. B /\ F =/= .0. ) -> F e. C ) |