Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngui.b | |- B = ( Base ` R ) |
|
drngui.z | |- .0. = ( 0g ` R ) |
||
drngui.r | |- R e. DivRing |
||
Assertion | drngui | |- ( B \ { .0. } ) = ( Unit ` R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngui.b | |- B = ( Base ` R ) |
|
2 | drngui.z | |- .0. = ( 0g ` R ) |
|
3 | drngui.r | |- R e. DivRing |
|
4 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
5 | 1 4 2 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) |
6 | 3 5 | mpbi | |- ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) |
7 | 6 | simpri | |- ( Unit ` R ) = ( B \ { .0. } ) |
8 | 7 | eqcomi | |- ( B \ { .0. } ) = ( Unit ` R ) |