Metamath Proof Explorer


Theorem drngui

Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses drngui.b
|- B = ( Base ` R )
drngui.z
|- .0. = ( 0g ` R )
drngui.r
|- R e. DivRing
Assertion drngui
|- ( B \ { .0. } ) = ( Unit ` R )

Proof

Step Hyp Ref Expression
1 drngui.b
 |-  B = ( Base ` R )
2 drngui.z
 |-  .0. = ( 0g ` R )
3 drngui.r
 |-  R e. DivRing
4 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
5 1 4 2 isdrng
 |-  ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) )
6 3 5 mpbi
 |-  ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) )
7 6 simpri
 |-  ( Unit ` R ) = ( B \ { .0. } )
8 7 eqcomi
 |-  ( B \ { .0. } ) = ( Unit ` R )