Metamath Proof Explorer


Theorem drngunit

Description: Elementhood in the set of units when R is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses isdrng.b
|- B = ( Base ` R )
isdrng.u
|- U = ( Unit ` R )
isdrng.z
|- .0. = ( 0g ` R )
Assertion drngunit
|- ( R e. DivRing -> ( X e. U <-> ( X e. B /\ X =/= .0. ) ) )

Proof

Step Hyp Ref Expression
1 isdrng.b
 |-  B = ( Base ` R )
2 isdrng.u
 |-  U = ( Unit ` R )
3 isdrng.z
 |-  .0. = ( 0g ` R )
4 1 2 3 isdrng
 |-  ( R e. DivRing <-> ( R e. Ring /\ U = ( B \ { .0. } ) ) )
5 4 simprbi
 |-  ( R e. DivRing -> U = ( B \ { .0. } ) )
6 5 eleq2d
 |-  ( R e. DivRing -> ( X e. U <-> X e. ( B \ { .0. } ) ) )
7 eldifsn
 |-  ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) )
8 6 7 bitrdi
 |-  ( R e. DivRing -> ( X e. U <-> ( X e. B /\ X =/= .0. ) ) )