Description: Elementhood in the set of units when R is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdrng.b | |- B = ( Base ` R ) |
|
isdrng.u | |- U = ( Unit ` R ) |
||
isdrng.z | |- .0. = ( 0g ` R ) |
||
Assertion | drngunit | |- ( R e. DivRing -> ( X e. U <-> ( X e. B /\ X =/= .0. ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrng.b | |- B = ( Base ` R ) |
|
2 | isdrng.u | |- U = ( Unit ` R ) |
|
3 | isdrng.z | |- .0. = ( 0g ` R ) |
|
4 | 1 2 3 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ U = ( B \ { .0. } ) ) ) |
5 | 4 | simprbi | |- ( R e. DivRing -> U = ( B \ { .0. } ) ) |
6 | 5 | eleq2d | |- ( R e. DivRing -> ( X e. U <-> X e. ( B \ { .0. } ) ) ) |
7 | eldifsn | |- ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) |
|
8 | 6 7 | bitrdi | |- ( R e. DivRing -> ( X e. U <-> ( X e. B /\ X =/= .0. ) ) ) |