| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equequ1 |
|- ( x = y -> ( x = z <-> y = z ) ) |
| 2 |
1
|
sps |
|- ( A. x x = y -> ( x = z <-> y = z ) ) |
| 3 |
2
|
imbi1d |
|- ( A. x x = y -> ( ( x = z -> ph ) <-> ( y = z -> ph ) ) ) |
| 4 |
2
|
anbi1d |
|- ( A. x x = y -> ( ( x = z /\ ph ) <-> ( y = z /\ ph ) ) ) |
| 5 |
4
|
drex1 |
|- ( A. x x = y -> ( E. x ( x = z /\ ph ) <-> E. y ( y = z /\ ph ) ) ) |
| 6 |
3 5
|
anbi12d |
|- ( A. x x = y -> ( ( ( x = z -> ph ) /\ E. x ( x = z /\ ph ) ) <-> ( ( y = z -> ph ) /\ E. y ( y = z /\ ph ) ) ) ) |
| 7 |
|
dfsb1 |
|- ( [ z / x ] ph <-> ( ( x = z -> ph ) /\ E. x ( x = z /\ ph ) ) ) |
| 8 |
|
dfsb1 |
|- ( [ z / y ] ph <-> ( ( y = z -> ph ) /\ E. y ( y = z /\ ph ) ) ) |
| 9 |
6 7 8
|
3bitr4g |
|- ( A. x x = y -> ( [ z / x ] ph <-> [ z / y ] ph ) ) |