Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of Megill p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | drsb2 | |- ( A. x x = y -> ( [ x / z ] ph <-> [ y / z ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ | |- ( x = y -> ( [ x / z ] ph <-> [ y / z ] ph ) ) |
|
2 | 1 | sps | |- ( A. x x = y -> ( [ x / z ] ph <-> [ y / z ] ph ) ) |