Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | drsbn0.b | |- B = ( Base ` K ) |
|
Assertion | drsbn0 | |- ( K e. Dirset -> B =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsbn0.b | |- B = ( Base ` K ) |
|
2 | eqid | |- ( le ` K ) = ( le ` K ) |
|
3 | 1 2 | isdrs | |- ( K e. Dirset <-> ( K e. Proset /\ B =/= (/) /\ A. x e. B A. y e. B E. z e. B ( x ( le ` K ) z /\ y ( le ` K ) z ) ) ) |
4 | 3 | simp2bi | |- ( K e. Dirset -> B =/= (/) ) |