Metamath Proof Explorer


Theorem drsbn0

Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis drsbn0.b
|- B = ( Base ` K )
Assertion drsbn0
|- ( K e. Dirset -> B =/= (/) )

Proof

Step Hyp Ref Expression
1 drsbn0.b
 |-  B = ( Base ` K )
2 eqid
 |-  ( le ` K ) = ( le ` K )
3 1 2 isdrs
 |-  ( K e. Dirset <-> ( K e. Proset /\ B =/= (/) /\ A. x e. B A. y e. B E. z e. B ( x ( le ` K ) z /\ y ( le ` K ) z ) ) )
4 3 simp2bi
 |-  ( K e. Dirset -> B =/= (/) )