Metamath Proof Explorer


Theorem drsprs

Description: A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion drsprs
|- ( K e. Dirset -> K e. Proset )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` K ) = ( Base ` K )
2 eqid
 |-  ( le ` K ) = ( le ` K )
3 1 2 isdrs
 |-  ( K e. Dirset <-> ( K e. Proset /\ ( Base ` K ) =/= (/) /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) E. z e. ( Base ` K ) ( x ( le ` K ) z /\ y ( le ` K ) z ) ) )
4 3 simp1bi
 |-  ( K e. Dirset -> K e. Proset )